Paramagnetism in Experimental Biomolecular NMR
eBook - ePub

Paramagnetism in Experimental Biomolecular NMR

Claudio Luchinat, Giacomo Parigi, Enrico Ravera, Claudio Luchinat, Giacomo Parigi, Enrico Ravera

Compartir libro
  1. 316 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Paramagnetism in Experimental Biomolecular NMR

Claudio Luchinat, Giacomo Parigi, Enrico Ravera, Claudio Luchinat, Giacomo Parigi, Enrico Ravera

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Paramagnetic NMR is a growing technique that represents an increasingly important tool for the investigation of biomolecules. This book presents an update and overview of the paramagnetic NMR phenomena and effects as well as guidelines for practical implementation of state-of-the-art experiments. All experiments are supported by a solid theoretical foundation. Areas mentioned are the development of solid state NMR, the use of paramagnetic tags providing information on the structure and mobility of the investigated systems, and dynamic nuclear polarization to increase sensitivity.

Compiled by experts in the field, this book has international appeal for researchers as well as students interested in magnetic resonance and structural biology who require experimental support and accessible information.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Paramagnetism in Experimental Biomolecular NMR un PDF/ePUB en línea?
Sí, puedes acceder a Paramagnetism in Experimental Biomolecular NMR de Claudio Luchinat, Giacomo Parigi, Enrico Ravera, Claudio Luchinat, Giacomo Parigi, Enrico Ravera en formato PDF o ePUB, así como a otros libros populares de Scienze fisiche y Chimica analitica. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2018
ISBN
9781788014960
Edición
1
Categoría
Scienze fisiche
CHAPTER 1
NMR Consequences of the Nucleus–Electron Spin Interactions
GIACOMO PARIGIa,b AND CLAUDIO LUCHINAT*a,b
a Magnetic Resonance Center (CERM), via L. Sacconi 6, Sesto Fiorentino 50019, Italy;
b Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
*Email: [email protected]

1.1 The Effect of Paramagnetism on NMR Spectra

The presence of unpaired electrons in molecules makes them paramagnetic and largely affects their NMR spectra. The main effects related to the presence of a paramagnetic center, i.e., of atoms or ions with unpaired electrons, are (see Figure 1.1):1
(1) the NMR shifts are perturbed, so that the shifts measured for the paramagnetic molecule (δ) and for a diamagnetic analogue (δdia) (i.e., for the same molecule without the paramagnetic center or with the paramagnetic metal ion substituted by a diamagnetic one) differ. These differences are called hyperfine shifts (δhs):
image
(1.1)
(2) the nuclear relaxation rates of the paramagnetic molecule (R1, longitudinal; R2, transverse) are increased with respect to those of a diamagnetic analogue (Rdia1 and Rdia2). This difference is called paramagnetic relaxation enhancement (R1M and R2M):
image
(1.2)
(3) the probabilities for the different orientations of the paramagnetic molecule in a magnetic field are not the same, so a partial self-orientation occurs. This partial self-orientation is responsible for the occurrence of residual dipolar couplings (Δνrdc), analogously to what happens when partial molecular orientation is driven by external devices. The presence of paramagnetic residual dipolar couplings affects the J-coupling between nuclei:
image
(1.3)
This chapter deals with the description of these effects, and of their physical origin, which is related to the so-called hyperfine coupling. In eqn (1.1)(1.3) other minor effects, namely residual anisotropic chemical shifts, cross relaxation terms, and dynamic frequency shifts, respectively, have been neglected (see later).
image
Figure 1.1 The presence of a paramagnetic center affects NMR shifts (a), relaxation rates (b) and 1J splitting (c).

1.1.1 The Hyperfine Coupling

The interaction between the magnetic moment associated to a nuclear spin I and the magnetic moment associated to an unpaired electron spin S is called hyperfine coupling and is traditionally described by the Hamiltonian
image
(1.4)
The energy corresponding to this interaction fluctuates with time (and thus this interaction represents a source of relaxation for the nuclear spin, see Section 1.4) as a result of the molecular motions and of changes in the electron spin state. The other terms describing the contributions to the energy of the system are:
(i) the Zeeman interaction between the applied magnetic field B0 and the nuclear magnetic moment μI=ħγII, where ħ is Planck's constant divided by 2π and γI is the nuclear magnetogyric ratio,
(ii) the Zeeman interaction between B0 and an ‘effective’ electron magnetic moment taking into account both the electron spin and the orbital magnetic moments. This is parameterised using the g tensor, with the effective electron magnetic moment given by μS=−μBg · S, where μB is the electron Bohr magneton. Therefore, the g tensor couples the ‘effective’ electron spin to B0, thus accounting for the presence of the anisotropic orbital contributions to the electron ma...

Índice