Supramolecular Chemistry of Fullerenes and Carbon Nanotubes
eBook - ePub

Supramolecular Chemistry of Fullerenes and Carbon Nanotubes

Nazario Martin, Jean-Francois Nierengarten, Nazario Martin, Jean-Francois Nierengarten

  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Supramolecular Chemistry of Fullerenes and Carbon Nanotubes

Nazario Martin, Jean-Francois Nierengarten, Nazario Martin, Jean-Francois Nierengarten

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Collating our current knowledge and the latest developments for enabling breakthrough discoveries, this book focuses on the synthesis and applications of materials that are based on supramolecular assemblies of carbon nanostructures, with an emphasis on fullerenes and nanotubes. In so doing, it provides readers with an overview of the different types of supramolecular architectures, accentuating the outstanding geometrical, electronic and photophysical properties of the building blocks and the resulting structures. It makes use of basic concepts and real-life applications -- from simple syntheses to complex architectures, from instructive examples to working experimental procedures, and from photophysics to solar cells. A large part of each chapter is devoted to the methods and possibilities of controlling and tuning these molecular assemblies in order to obtain working devices.
Fascinating reading for materials scientists, organic chemists, molecular physicists, and those in the semiconductor industry.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Supramolecular Chemistry of Fullerenes and Carbon Nanotubes als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Supramolecular Chemistry of Fullerenes and Carbon Nanotubes von Nazario Martin, Jean-Francois Nierengarten, Nazario Martin, Jean-Francois Nierengarten im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Materials Science. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Wiley-VCH
Jahr
2012
ISBN
9783527650149
Chapter 1
Carbon Nanostructures: Covalent and Macromolecular Chemistry
Francesco Giacalone, Maa Ángeles Herranz, and Nazario Martín
1.1 Introduction
The aim of this introductory chapter is to bring to the attention of the readers the achievements made in the chemistry of carbon nanostructures and, mostly, in the chemistry of fullerenes, carbon nanotubes (CNTs), and the most recent graphenes. Since the discovery of fullerenes in 1985 and their further preparation in multigram amounts, the chemistry and reactivity of these molecular carbon allotropes have been well established. Actually, this chemical reactivity has been used as a benchmark for further studies carried out in the coming carbon nanotubes (single and multiple wall) and graphenes. Assuming that the fundamental chemistry of fullerenes is known and basically corresponds to that of typical electron-deficient alkenes, we have mainly focused on the chemistry of fullerene-containing polymers. In this regard, the combination of the unique fullerenes with the highly versatile polymer chemistry has afforded a new and interdisciplinary field in which the resulting architectures are able to exhibit unprecedented properties. The basic knowledge of this important topic of macromolecular chemistry of fullerenes nicely complements the following chapters devoted to their supramolecular chemistry.
The chemistry of CNTs, on the other hand, is considerable less developed than that of fullerenes, and most of their studied reactions are generally based on those previously studied on fullerenes. Therefore, despite the recent reviews and books published on CNTs, we feel that an introductory chapter describing the most significant solubilization/derivatization covalent and noncovalent methods should be helpful and welcome by the readers, and particularly to those nonexperts in the field. This same objective has been pursued for the most recent and planar graphenes. The available literature on the chemistry of these one-atom thickness carbon allotropes is considerably less developed. Therefore, some useful chemical procedures reported so far for the functionalization and solubilization of graphenes – thus allowing its manipulation and application for the construction of devices – have also been included at the end of the chapter.
1.2 Fullerene-Containing Polymers
Since the achievement of [60]fullerenes in ponderable amounts [1], its combination with macromolecular chemistry provided an opportunity to generate new fullerene-containing polymers, with potential for a broad scope of real applications since it merges C60 properties with the ease and versatile processability and handling of polymers. This approach prompted chemists to design and develop synthetic strategies aimed to obtain even more complex and fascinating novel fullerene-based architectures with unprecedented properties that have been recently reviewed 2. In fact, chemists are now able to tailor at will a polymeric backbone possessing C60 moieties in such way as to achieve peculiar properties of the final macromolecular material. In this way, block copolymer with well-defined donor–acceptor domains within the diffusion path of electron are created for solar devices [3], or water-soluble biocompatible and biodegradable polymers are designed in order to carry fullerene in circulation for photodynamic cancer therapy purposes 4. These recent achievements are only the tip of the iceberg of a growing field in which almost all the materials display outstanding properties such as optical limiting [5], or photoinduced electron transfer [6] just to name a few. In addition, polyfullerenes have been successfully employed as active materials not only in electroluminescent devices 7 but also in nonvolatile flash devices [8], and in membranes both for gas separation 9 and for proton exchange fuel cells [10].
The many types of polymeric fullerene derivatives may be classified according to their structural features. As a criterion for the classification, polyfullerenes can be ordered as a function of their increasing chemical complexity and the difficulty to synthesize them, and other interesting classes of nondiscrete multifullerene-containing hybrid materials may also be included in this classification (Figure 1.1).
Figure 1.1 Classification of the different types of C60-containing polymers and C60-hybrid materials.
img
All-fullerene polymers are specifically those materials or structures that are constituted exclusively by fullerene units covalently linked to each other 10. These “intrinsic polymers” are prepared simply by exposing pure fullerene to visible light [12], high pressure [13], electron beam [14], and plasma irradiation 15 without control or care for the final structure. Recently, it has been shown that unbound and bound states of C60 molecules can be reversibly controlled at the single-molecule level in ultrathin films of all-C60 polymers using a tip of a scanning tunneling microscope at RT, thus allowing single-molecule-level topochemical digital data [16].
Heteroatom-containing polymers have metals or elements other than carbon inserted in between two C60 moieties. In 1994, Forró discovered that the fulleride phases AC60 (A: K, Rb, Rb or Cs), undergo [2 + 2] cycloadditions producing polyfullerenes with alkali metals in the crystal voids 17. For the organometallic polymers, the metal doping of C60 leads to the formation of the corresponding charge transfer polymer [18]. Several different metals have been employed in the polymerization with fullerenes, but among them palladium led to the most promising copolymers with outstanding properties [19]. In fact, the polymer (C60Pd3)n has been able to catalyze heterogeneous hydrogenation reactions of alkenes [20]. Very recently, 1D “zigzag” polymers have been achieved by mixing fullerene with the oxidizing superacid AsF5 [21]. As a result, a polyfullerenium salt in the solid state has been prepared, with C602+ units connected by an alternating sequence of four-membered carbon rings ([2 + 2] cycloaddition) and single C−C bonds stabilized by ASF6 anions in the lattice.
Cross-linked C60 polymers are synthesized from random and quick reactions that proceed in three dimensions with the help of the fullerene topology. Nevertheless, some extent of control of the addition reactions to the 30 fullerene double bonds is required in order to avoid a drastic intractability of the final products. This class of polymers can be prepared by four main pathways (Figure 1.2):
a. C60 or a C60 derivative and a monomer are mixed together and allowed to react randomly.
b. A multisubstituted C60 derivative is homopolymerized in three dimensions.
c. A preformed polymer properly functionalized at the end termini is allowed to react with C60 or a multisubstituted C60 derivative.
d. Polymers endowed with pending reacting moieties are allowed to react with C60.
Although cross-linked polymers are rather intractable materials, even in this family of polyfullerenes there exist some interesting and useful examples: random fullerene-containing polystyrenes (PS) 22 and poly(methylmethacrylate) [23] showed outstanding nonlinear optics. Nevertheless, cross-linked fullerene-containing polyurethanes displayed third-order NLO response with one–two orders of enhancement in comparison with other C60 derivatives 24. But the very “revenge” of this family against all the other processable C60 polymers stems from a novel approach described recently by Cheng and Hsu, which will create an organic photovoltaics revolution [25]. They generated in situ a robust cross-linked C60 pol...

Inhaltsverzeichnis

  1. Cover
  2. Related Titles
  3. Title Page
  4. Copyright
  5. Preface
  6. List of Contributors
  7. Chapter 1: Carbon Nanostructures: Covalent and Macromolecular Chemistry
  8. Chapter 2: Hydrogen-Bonded Fullerene Assemblies
  9. Chapter 3: Receptors for Pristine Fullerenes Based on Concave–Convex π–π Interactions
  10. Chapter 4: Cooperative Effects in the Self-Assembly of Fullerene Donor Ensembles
  11. Chapter 5: Fullerene-Containing Rotaxanes and Catenanes
  12. Chapter 6: Biomimetic Motifs Toward the Construction of Artificial Reaction Centers
  13. Chapter 7: Supramolecular Chemistry of Fullerene-Containing Micelles and Gels
  14. Chapter 8: Fullerene-Containing Supramolecular Polymers and Dendrimers
  15. Chapter 9: [60]Fullerene-Containing Thermotropic Liquid Crystals
  16. Chapter 10: Supramolecular Chemistry of Fullerenes on Solid Surfaces
  17. Chapter 11: Supramolecular Chemistry of Carbon Nanotubes
  18. Chapter 12: Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications
  19. Chapter 13: Applications of Supramolecular Ensembles with Fullerenes and CNTs: Solar Cells and Transistors
  20. Chapter 14: Experimental Determination of Association Constants Involving Fullerenes
  21. Index
Zitierstile für Supramolecular Chemistry of Fullerenes and Carbon Nanotubes

APA 6 Citation

Martin, N., & Nierengarten, J.-F. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (1st ed.). Wiley. Retrieved from https://www.perlego.com/book/1012484/supramolecular-chemistry-of-fullerenes-and-carbon-nanotubes-pdf (Original work published 2012)

Chicago Citation

Martin, Nazario, and Jean-Francois Nierengarten. (2012) 2012. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. 1st ed. Wiley. https://www.perlego.com/book/1012484/supramolecular-chemistry-of-fullerenes-and-carbon-nanotubes-pdf.

Harvard Citation

Martin, N. and Nierengarten, J.-F. (2012) Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. 1st edn. Wiley. Available at: https://www.perlego.com/book/1012484/supramolecular-chemistry-of-fullerenes-and-carbon-nanotubes-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Martin, Nazario, and Jean-Francois Nierengarten. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. 1st ed. Wiley, 2012. Web. 14 Oct. 2022.