Terpene
eBook - ePub

Terpene

Aromen, Düfte, Pharmaka, Pheromone

  1. German
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Terpene

Aromen, Düfte, Pharmaka, Pheromone

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Dieses einfuhrende Lehrbuch bietet Studenten der Chemie, Biochemie, Biologie und Pharmazie eine perfekt strukturierte und kompakte Ubersicht uber die faszinierende Welt der Terpene. Der Leser lernt die Systematik der Terpenstrukturen, Vorkommen, biologische, olfaktorische und pharmakologische Wirkungen kennen, aber auch ausgewahlte Totalsynthesen (z.B. von Insektenpheromonen und Baccatin III als Vorstufe des Antikrebsmittels Taxol) und wichtige industrielle Herstellungsverfahren fur Riechstoffe und Vitamin A werden prasentiert.
Die zweite Auflage ist vollstandig uberarbeitet und enthalt einige zusatzliche Abschnitte, u.a. uber Biogenese, polycyclische Monoterpene,
Cannabinoide, Ginkgolide und Geo-Hopane. Aus dem Inhalt:
* Terpene - Bedeutung, Bauprinzip, Biosynthese
* Hemi-, Mono-, Sesqui-, Di-, Sester-, Tri- Tetra- und Polyterpene
* biologische, olfaktorische und pharmakologische Eigenschaften
* ausgewahlte Terpen-Synthesen
* Isolierung und Strukturaufklarung"

Häufig gestellte Fragen

Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja, du hast Zugang zu Terpene von Eberhard Breitmaier im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Organic Chemistry. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Wiley-VCH
Jahr
2012
ISBN
9783527660483

1

Terpene, Bedeutung, Bauprinzip, Biosynthese

1.1 Begriff und Bedeutung

Der Begriff Terpene stammt vom Terpentin (Balsamum Terebinthinae) ab. Terpentin, das „Kiefernharz“, ist der zähflüssige Balsam mit seinem angenehm frischen Geruch, welcher beim Anschneiden oder Einkerben aus der Rinde und dem jungen Holz verschiedener Kiefern (Pinaceae) fließt. Terpentin enthält die „Harzsäuren“ und einige Kohlenwasserstoffe, die zunächst herkunftsgemäß als Terpene bezeichnet wurden. Traditionell versteht man unter Terpenen Naturstoffe weit überwiegend pflanzlicher Herkunft, die durchweg aus Isopren-Untereinheiten aufgebaut sind 1 (Abschn. 1.2).
Schon lange ist bekannt, daß Nadelhölzer, Balsambäume und Citrusfrüchte, Coriander, Eucalyptus, Lavendel, Lemongras, Lilien, Nelken, Kümmel, Pfefferminz-Arten, Rosen, Rosmarin, Salbei, Thymian, Veilchen und viele andere Pflanzen oder deren Teile (Wurzeln, Rhizome, Stengel, Blätter, Blüten, Früchte, Samen) charakteristische, meist angenehme Düfte verbreiten, würzig schmecken oder bestimmte pharmakologische Wirkungen entfalten. Terpene prägen überwiegend diese Eigenschaften; um sie anzureichern, werden die Pflanzen entweder angeritzt wie zur Produktion des Wcihrauchs und der Myrrhe aus Balsambäumen, hauptsächlich jedoch extrahiert oder wasserdampfdestilliert wie zur Gewinnung des kostbaren Rosenblütenöls aus den duftenden Blüten bestimmter Rosenarten. Diese als ätherische Öle bekannten Extrakte oder Wasserdampfdestillate werden als Rohstoffe („essence absolue“) in der Parfümerie, zur Geschmacks- und Duftveredelung von Speisen und Getränken sowie zur Herstellung pflanzlicher Arzneimittel (Phytopharmaka) verwendet.
Die biologische, ökochemische Funktion der Terpene ist nur lückenhaft bekannt. Viele Pflanzen erzeugen flüchtige Terpene, um bestimmte Insekten zur Bestäubung anzulocken, andere dagegen als Fraßfeinde zu vertreiben; weniger flüchtige, jedoch toxische Terpene schützen die Pflanzen ebenfalls vor Fraßfeinden. Nicht zuletzt spielen die Terpene als Signalstoffe und Wachstumsregulatoren der Pflanzen (Phytohormone) eine wesentliche, erst in Ansätzen aufgeklärte Rolle.
Viele Insekten metabolisieren die mit der pflanzlichen Nahrung aufgenommenen Terpene zu Entwicklungshormonen und Pheromonen. Pheromone sind Lock- und Signalstoffe (Soziohormone), welche die Insekten zur Kommunikation mit ihren Artgenossen ausscheiden, z. B. zur Warnung (Alarmpheromone), zur Markierung von Nahrungsquellen, dem Weg dorthin (Spurpheromone), von Versammlungsplätzen (Aggregationspheromone) oder zur Paarung (Sexualpheromone). Sie können auf umweltfreundliche Weise konventionelle Insektizide ersetzen, indem sie Schadinsekten wie Borkenkäfer mit ihren eigenen Pheromonen in eine Falle locken.

1.2 Bauprinzip: Isopren-Regel

Rund 20000 Terpene sind derzeit bekannt2-7. Ihre Konstitution folgt einem einheitlichem Bauprinzip: Sie bestehen aus 2-Methylbutan- bzw. Isopren-Einheiten, (C5)n, und werden daher auch Isoprenoide genannt (Isopren-Regel 1 nach RUZICKA und WALLACH, Tab. 1). Terpene kommen in der Natur hauptsächlich als Kohlenwasserstoffe, als Alkohole und deren Glycoside, als Ether, Aldehyde, Ketone, Carbonsäuren und Ester vor.
Tab. 1. Stammkohlenwasserstoffe der Terpene (Isoprenoide)
image
Je nach Anzahl der 2-Methylbutan- bzw. Isopren-Untereinheiten unterscheidet man gemäß Tab. 1 Hemi- (C5), Mono- (C10), Sesqui- (C15), Di- (C20), Sester- (C25), Tri- (C30), Tetraterpene (C40) sowie Polyterpene (C5)n mit n > 8.
Die Isopropyl-Gruppe des 2-Methylbutans wird als Kopf, die Ethyl-Gruppe als Schwanz bezeichnet (Tab. 1). In Mono-, Sesqui-, Di- und Sesterterpenen sind die Isopren-Einheiten Kopf an Schwanz verknüpft; Tri- und Tetraterpene enthalten je eine Schwanz-Schwanz-Verknüpfung.

1.3 Biosynthese

Biogenetische Vorstufe der Terpene ist das Acetyl-Coenzym A, die aktivierte Essigsäure (Abb. 1)9-11. Nach einer Art CLAISEN-Kondensation zweier Äquivalente Acetyl-CoA entsteht Acetoacetyl-CoA, eine biologische Version des Acetessigesters. Acetoacetyl-CoA reagiert mit einem weiteren Äquivalent Acetyl-CoA als C-Nucleophil nach dem Muster einer Aldol-Reaktion zum β-Hydroxy-β-methylglutaryl-CoA weiter, bevor eine enzymatische Reduktion mit Dihydronicotinadenindinucleotid (NADPH + H+) in Gegenwart von Wasser die (R)-Mevalonsäure ergibt. Deren Phosphorylierung mit Adenosintriphosphat (ATP) führt über Mevalonsäuremono- und diphosphat unter Decarboxylierung und Dehydratisierung zum Isopentenylpyrophosphat (Isopentenyldiphosphat, IPP), das durch eine SH-Gruppen enthaltende Isomerase zum γ,γ-Dimethylallylpyrophosphat isomerisiert. Verknüpfung der elektrophilen Allyl-CH2-Gruppe des γ,γ-Dimethylallylpyrophosphats mit der nucleophilen Methylen-Gruppe des Isopentenylpyrophosphats führt zum Geranylpyrophosphat als Monoterpen. Dessen Weiterreaktion mit einem Äquivalent Isopentenylpyrophosphat liefert Farnesylpyrophosphat als Sesquiterpen (Abb. 1).
image
Abb. 1. Schema zur Biogenese der Mono- und Sesquiterpene
c01_image002.webp
Allerdings zeigten vergebliche Einbauversuche von 13C-markiertem Acetat und erfolgreiche von 13C-markiertem Glycerol sowie Pyruvat in Hopane und Ubichinone, daß sich Isopentenyldiphosphat (IPP) nicht nur auf dem Acetat-Mevalonat- Weg, sondern auch aus aktiviertem Acetaldehyd (C2, aus Pyruvat und Thiamindiphosphat) und Glyceraldehyd-3-phosphat (C3) bilden kann 12. Als erste unverzweigte C5-Vorstufe des IPP entsteht dabei 1-Deoxypentulose-5-phosphat.
image
Abb. 2. Schema zur Biogenese der Di-, Tri- und Tetraterpene
c01_image002.webp
Bindet ein Isopentenylpyrophosphat mit nucleophilem Kopf an Farnesylpyrophosphat mit elektrophilem Schwanz, so entsteht Geranylgeranylpyrophosphat als Diterpen (Abb. 2). Sesterterpene (C25) bilden sich durch eine weitere Kopf-Schwanz-Verknüpfung von Isopentenylpyrophosphat (C5) mit Geranylgeranylpyrophosphat (C20). Schwanz-Schwanz-Verknüpfung zweier Äquivalente Farnesylpyrophosphat führt zu Squalen als Triterpen (Abb. 2). Analog bilden sich Tetraterpene (Carotenoide wie 16-trans-Phytoen) durch Schwanz-Schwanz-Dimerisierung von Geranylgeranylpyrophosphat (Abb. 2).
Die in vivo bisher nur vereinzelt nachgewiesenen Hypothesen zum Mechanismus der Biogenese cyclischer und polycyclischer Terpene 9-10 gründen sich überwiegend auf die Chemie der intermediären Carbenium Ionen. Im einfachsten Fall monocyclischer Monoterpene wie des Limonens cyclisiert das nach Abspaltung des Pyrophosphat-Anions gebildete Allyl-Kation zum Cyclohexyl-Kation. Dessen Deprotonierung ergibt (R)- oder (S)-Limonen.
image
Die nichtklassische Formulierung der nach Abspaltung des Pyrophosphat-Anions entstehenden Carbenium-Ionen macht die Cyclisierung zu mehreren cyclischen Carbenium Ionen verständlich 8, wie es sich exemplarisch an einigen Sesquiterpenen zeigt (Abb. 3). Zusätzliche Vielfalt ergibt sich einerseits aus 1,2-Hydrid- und 1,2-Alkyl-Verschiebungen (WAGNER-MEERWEIN-Umlagerungen) sowie sigmatropen Reaktionen (Cope-Umlagerungen), andererseits aus der Bildung von Diastereomeren und Enantiomeren, wenn die Cyclisierungen neue asymmetrische C-Atome erzeugen (Abb. 3)8-10.
So erklärt das nach Abspaltung des Pyrophosphat-Anions aus Farnesylpyrophosphat hervorgehende nichtklassische Carbenium Ion die Bildung der monocyclischen Sesquiterpene Humulatrien und Germacratrien durch Deprotonierung. Die COPE-Umlagerung des Germacratriens führt zum Elematrien. Das durch Protonierung des Germacratriens unter MARKOWNIKOW-Orientierung zunächst entstehende (höher alkylierte und daher stabilere) Carbenium Ion kann durch 1,2-Hydrid- Verschiebungen zu bicyclischen Carbenium Ionen mit Eudesman- und Guajan- Grundskelett umlagern. Deprotonierungen fuhren zu diastereomeren Eudesmadienen und Guajadienen. Eudesmane können schließlich durch 1,2-Methyl-Verschiebung zu Eremophilanen umlagern (Abb. 3).
Abb. 3. Biogenese einiger mono- und bicyclischer Sesquiterpene aus Farnesylpyrophosphat
image
Entsprechend bildet sich das vierzehngliedrige Grundskelett des Cembrans, von dem zahlreiche weitere polycyclische Diterpene abstammen. Das als Cembren A bekannte 3,7,11,15-Cembratetraen entsteht unmittelbar aus Geranylgeranylpyrophosphat (Abb. 2) durch Cyclisierung des resultierenden Allyl-Kations 9-10.
image
Die Biogenese des Pimarans als Stammverbindung zahlreicher polycyclischer Diterpene geht sehr wahrscheinlich vom iso-Geranylgeranylpyrophosphat aus 9-10 Das nach Abspaltung des Pyrophosphat-Anions gebildete acyclische Allyl-Kation cyclisiert nach 1,3-sigmatroper H-Verschiebung zu einem monocyclischen Carbenium-Ion, das seinerseits unter 1,2-Hydrid-Verschiebung zur ionischen Vorstufe des tricyclischen Pimaran-Grundskeletts umlagert.
image
Tab. 2. Isoprenoide, Überblick
image
Das 2,3-Epoxy-Derivat des Squalens ist aufgrund von Markierungsexperimenten die biogenetische Vorstufe te...

Inhaltsverzeichnis

  1. Cover
  2. Series
  3. Title
  4. Copyright
  5. Vorwort
  6. 1: Terpene, Bedeutung, Bauprinzip, Biosynthese
  7. 2: Hemi- und Monoterpene
  8. 3: Sesquiterpene
  9. 4: Diterpene
  10. 5: Sesterterpene
  11. 6: Triterpene
  12. 7: Tetraterpene
  13. 8: Polyterpene und Prenylchinone
  14. 9: Ausgewählte Terpen-Synthesen
  15. 10: Isolierung und Strukturaufklärung
  16. Übersicht bedeutender Terpen-Grundskelette
  17. Bibliographie
  18. Sachverzeichnis