Physics of Electric Propulsion
eBook - ePub

Physics of Electric Propulsion

Robert G. Jahn

  1. 368 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Physics of Electric Propulsion

Robert G. Jahn

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Geared toward advanced undergraduates and graduate students, this text systematically develops the concepts of electrical acceleration of gases for propulsion. Author Robert G. Jahn, Professor of Aerospace Sciences at Princeton University, starts his presentation with primary physical principles and concludes with realistic space thruster designs.
Part I consists of a survey of those aspects of electricity, magnetism, and ionized gas mechanics that underlie the physical mechanisms for gas acceleration. These topics constitute the main body of the text. Part II's broad division into the categories of electrothermal, electrostatic, and electromagnetic acceleration mechanisms conforms to the historical development of the field and offers conceptual organization for new students.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Physics of Electric Propulsion als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Physics of Electric Propulsion von Robert G. Jahn im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Ciencias físicas & Física. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2012
ISBN
9780486138671

part one

Physical Background

1

The Province of Electric Propulsion

1-1 HIGH IMPULSE SPACE MISSIONS

The primary attraction of electric thrusters for the propulsion of spacecraft lies in their highly efficient utilization of propellant mass. The corresponding reduction in the propellant supply which must be contained and transported in the spacecraft permits the inclusion of a greater portion of useful payload and the achievement of space missions inaccessible to conventional chemical rockets. Rigorous demonstration of these potentialities involves detailed analyses of specific missions, but the essential concept may be illustrated by basic dynamical arguments.
The flight of a simple rocket in a gravitational field is described by the vector differential equation of motion [1],2
e9780486138671_i0009.webp
(1-1)
where
e9780486138671_i0010.webp
acceleration vector of rocket
= rate of change of rocket mass by exhaust of propellant (a negative quantity)
ue = exhaust velocity relative to rocket
Fg = local gravitational force
The first term on the right is commonly identified as the thrust of the rocket,
e9780486138671_i0011.webp
(1-2)
and its integral over a complete mission is called the total impulse,
e9780486138671_i0012.webp
(1-3)
For a mission of large total impulse requirement, it is apparent that the desired thrust should be achieved via high exhaust velocity rather than by excessive ejection of propellant mass, lest the craft be committed to an intolerably large initial propellant mass fraction. As a simple example, if the rocket operates at constant ue in a region where the local gravitational field is negligible in comparison with the thrust, or if it exhausts its propellant over a negligibly short interval of time (impulsive thrust), the equation of motion integrates directly to the scalar form
e9780486138671_i0013.webp
(1-4)
where Δv is the magnitude of velocity increment achieved by the ejection of Δm of the initial mass m0. By expending all its propellant mass in this way, the rocket can attain a maximum velocity increment
e9780486138671_i0014.webp
(1-5)
where mf includes the mass of the rocket casing, engine, tankage, etc., plus useful payload. Conversely, the fraction of the original rocket mass which can be accelerated through a given velocity increment Δv is a negative exponential in the ratio of that increment to the exhaust speed:
e9780486138671_i0015.webp
(1-6)
Clearly, it is necessary to provide ue comparable with Δv if a significant fraction of the original mass is to be brought to the final velocity.
More complicated missions of practical interest, involving flight through planetary, lunar, or solar gravitational fields, with variable magnitude and direction thrust programs, staging, etc., can also be represented by characteristic velocity increments Δν, each of which satisfies relation (1-6) for the particular mission involved [2]. In general, long-range missions, such as interplanetary flights, or long-time missions, such as the maintenance of satellite position and orientation for several years, are characterized by correspondingly large Δv. For example, detailed analyses of certain interplanetary missions yield the characteristic velocity increments shown in Table 1-1.
Table 1-1 Characteristic velocity increments for planetary transfer missions
Mission Δυ, m/sec
Escape from earth surface (impulsive) 1.12 × 104
Escape from 300-mile orbit (impulsive) 3.15 × 103
Escape from 300-mile orbit (gentle spiral) 7.59 × 103
Earth orbit to Mars orbit and return † 1.4 × 104
Earth surface to Mars surface and return † 3.4 × 104
Earth orbit to Venus orbit and return † 1.6 × 104
Earth orbit to Mercury orbit and return † 3.1 × 104
Earth orbit to Jupiter orbit and return † 6.4 × 104
Earth orbit to Saturn orbit and return † 1.1 × 105
† Values are quoted for typical impulsive missions over minimum propellant semiellipse trajectories.

1-2 EXHAUST VELOCITY AND SPECIFIC IMPULSE

The propellant exhaust velocity ue, which ideally should be comparable with the mission Δv, is determined by the detailed nature of the acceleration of the propellant gas within the rocket. It is directly related to another characteristic parameter of the rocket engine, the specific impulse, defined to be the ratio of thrust to the rate o...

Inhaltsverzeichnis

  1. DOVER BOOKS ON PHYSICS
  2. Title Page
  3. Copyright Page
  4. Dedication
  5. Preface
  6. Table of Contents
  7. List of Symbols
  8. part one - Physical Background
  9. part two - Electrical Acceleration of Gases
  10. Appendix - Space Power Supplies and Low Thrust Mission Analysis
  11. INDEX
  12. A CATALOG OF SELECTED DOVER BOOKS IN SCIENCE AND MATHEMATICS
Zitierstile für Physics of Electric Propulsion

APA 6 Citation

Jahn, R. (2012). Physics of Electric Propulsion ([edition unavailable]). Dover Publications. Retrieved from https://www.perlego.com/book/110477/physics-of-electric-propulsion-pdf (Original work published 2012)

Chicago Citation

Jahn, Robert. (2012) 2012. Physics of Electric Propulsion. [Edition unavailable]. Dover Publications. https://www.perlego.com/book/110477/physics-of-electric-propulsion-pdf.

Harvard Citation

Jahn, R. (2012) Physics of Electric Propulsion. [edition unavailable]. Dover Publications. Available at: https://www.perlego.com/book/110477/physics-of-electric-propulsion-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Jahn, Robert. Physics of Electric Propulsion. [edition unavailable]. Dover Publications, 2012. Web. 14 Oct. 2022.