Elementary Principles in Statistical Mechanics
eBook - ePub

Elementary Principles in Statistical Mechanics

J. Willard Gibbs

  1. 224 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfĂŒgbar
eBook - ePub

Elementary Principles in Statistical Mechanics

J. Willard Gibbs

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Written by J. Willard Gibbs, the most distinguished American mathematical physicist of the nineteenth century, this book was the first to bring together and arrange in logical order the works of Clausius, Maxwell, Boltzmann, and Gibbs himself. The lucid, advanced-level text remains a valuable collection of fundamental equations and principles.
Topics include the general problem and the fundamental equation of statistical mechanics, the canonical distribution of the average energy values in a canonical ensemble of systems, and formulas for evaluating important functions of the energies of a system. Additional discussions cover maximum and minimal properties of distribution in phase, a valuable comparison of statistical mechanics with thermodynamics, and many other subjects.

HĂ€ufig gestellte Fragen

Wie kann ich mein Abo kĂŒndigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kĂŒndigen“ – ganz einfach. Nachdem du gekĂŒndigt hast, bleibt deine Mitgliedschaft fĂŒr den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich BĂŒcher herunterladen?
Derzeit stehen all unsere auf MobilgerĂ€te reagierenden ePub-BĂŒcher zum Download ĂŒber die App zur VerfĂŒgung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die ĂŒbrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den AboplÀnen?
Mit beiden AboplÀnen erhÀltst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst fĂŒr LehrbĂŒcher, bei dem du fĂŒr weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhĂ€ltst. Mit ĂŒber 1 Million BĂŒchern zu ĂŒber 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
UnterstĂŒtzt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nÀchsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Elementary Principles in Statistical Mechanics als Online-PDF/ePub verfĂŒgbar?
Ja, du hast Zugang zu Elementary Principles in Statistical Mechanics von J. Willard Gibbs im PDF- und/oder ePub-Format sowie zu anderen beliebten BĂŒchern aus Physical Sciences & Physics. Aus unserem Katalog stehen dir ĂŒber 1 Million BĂŒcher zur VerfĂŒgung.

Information

Jahr
2014
ISBN
9780486799155
ELEMENTARY PRINCIPLES IN STATISTICAL MECHANICS
CHAPTER I.
GENERAL NOTIONS. THE PRINCIPLE OF CONSERVATION OF EXTENSION-IN-PHASE.
WE shall use Hamilton’s form of the equations of motion for a system of n degrees of freedom, writing q1, 
 qn for the (generalized) coördinates,
image
for the (generalized) velocities, and
image
for the moment of the forces. We shall call the quantities F1, 
 Fn the (generalized) forces, and the quantities p1 
 pn, defined by the equations
image
where ∊p denotes the kinetic energy of the system, the (generalized) momenta. The kinetic energy is here regarded as a function of the velocities and coördinates. We shall usually regard it as a function of the momenta and coördinates,* and on this account we denote it by ∊p. This will not prevent us from occasionally using formulae like (2), where it is sufficiently evident the kinetic energy is regarded as function of the
image
and q’s. But in expressions like d∊p/dq1, where the denominator does not determine the question, the kinetic energy is always to be treated in the differentiation as function of the p’s and q’s.
We have then
image
These equations will hold for any forces whatever. If the forces are conservative, in other words, if the expression (1) is an exact differential, we may set
image
where ∊q is a function of the coördinates which we shall call the potential energy of the system. If we write ∊ for the total energy, we shall have
image
and equations (3) may be written
image
The potential energy (∊q) may depend on other variables beside the coördinates q1
 qn. We shall often suppose it to depend in part on coördinates of external bodies, which we shall denote by a1, a2, etc. We shall then have for the complete value of the differential of the potential energy *
image
where A1, A2, etc., represent forces (in the generalized sense) exerted by the system on external bodies. For the total energy (∊) we shall have
image
It will be observed that the kinetic energy (∊p) in the most general case is a quadratic function of the p’s (or
image
’s) involving also the q’s but not the a’s ; that the potential energy, when it exists, is function of the q’s and a’s ; and that the total energy, when it exists, is function of the p’s (or
image
’s), the q’s, and the a’s. In expressions like d∊/dq1 the p’s, and not the
image
’s, are to be taken as independent variables, as has already been stated with respect to the kinetic energy.
Let us imagine a great number of independent systems, identical in nature, but differing in phase, that is, in their condition with respect to configuration and velocity. The forces are supposed to be determined for every system by the same law, being functions of the coördinates of the system q1, 
 qn, either alone or with the coördinates a1, a2, etc. of certain external bodies. It is not necessary that they should be derivable from a force-function. The external coördinates a1, a2, etc. may vary with the time, but at any given time have fixed values. In this they differ from the internal coördinates q1, 
 qn, which at the same time have different values in the different systems considered.
Let us especially consider the number of systems which at a given instant fall within specified limits of phase, viz., those for which
image
the accented letters denoting constants. We shall suppose the differences
image
, etc. to be infinitesimal, and that the systems are distributed in phase in some continuous manner,* so that the number having phases within the limits specified may be represented by
image
or more briefly by
image
where...

Inhaltsverzeichnis

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface
  5. Contents
  6. Chapter I. General Notions. The Principle of Conservation of Extension–In–Phase.
  7. Chapter II. Application of the Principle of Conservation of Extension–In–Phase to the Theory of Errors.
  8. Chapter III. Application of the Principle of Conservation of Extension–In–Phase to the Integration of the Differential Equations of Motion.
  9. Chapter IV. On the Distribution–In–Phase Called Canonical, in which the Index of Probability is a Linear Function of the Energy.
  10. Chapter V. Average Values in a Canonical Ensemble Of Systems.
  11. Chapter VI. Extension–In–Configuration and Extension–In–Velocity.
  12. Chapter VII. Farther Discussion of Averages in a Canonical Ensemble of Systems.
  13. Chapter VIII. On Certain Important Functions of the Energies of a System.
  14. Chapter IX. The Function ϕ and the Canonical Distribution.
  15. Chapter X. On a Distribution in Phase Called Microcanonical in which all the Systems have the Same Energy.
  16. Chapter XI. Maximum and Minimum Properties of Various Distributions in Phase.
  17. Chapter XII. On the Motion of Systems and Ensembles of Systems through Long Periods of Time.
  18. Chapter XIII. Effect of Various Processes on an Ensemble of Systems.
  19. Chapter XIV. Discussion of Thermodynamic Analogies.
  20. Chapter XV. Systems Composed of Molecules.