Sweet Biochemistry
eBook - ePub

Sweet Biochemistry

Remembering Structures, Cycles, and Pathways by Mnemonics

Asha Kumari

  1. 146 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Sweet Biochemistry

Remembering Structures, Cycles, and Pathways by Mnemonics

Asha Kumari

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Sweet Biochemistry: Remembering Structures, Cycles, and Pathways by Mnemonics makes biochemistry lively, interesting and memorable. by connecting objects, images and stories. Dr. Kumari has converted cycles and difficult pathways into very simple formula, very short stories and images which will help readers see familiar things in complicated cycles and better visualize biochemistry.

  • Provides quick, indigenous formulas, mnemonics, figures and short stories to help users simply recollect the study of biochemistry
  • Gives unique descriptions of the difficult areas in biochemistry and new ways of remembering a pathway or structure
  • Presents original diagrams that resonate and are easy to recall

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Sweet Biochemistry als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Sweet Biochemistry von Asha Kumari im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Biological Sciences & Biochemistry. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2017
ISBN
9780128144541
Chapter 1

Glycolysis

Abstract

Glycolysis is a cytoplasmic pathway which breaks down glucose into two three-carbon compounds and generates energy. Glucose is trapped by phosphorylation, with the help of the enzyme hexokinase. Adenosine triphosphate (ATP) is used in this reaction and the product, glucose-6-P, inhibits hexokinase. Glycolysis takes place in 10 steps, five of which are in the preparatory phase and five are in the pay-off phase. Phosphofructokinase is the rate-limiting enzyme. ATP is generated by substrate-level phosphorylation by high-energy compounds, such as 1,3-bisphosphoglycerate and phosphoenolpyruvate.
Glycolysis is used by all cells in the body for energy generation. The final product of glycolysis is pyruvate in aerobic settings and lactate in anaerobic conditions. Pyruvate enters the Krebs cycle for further energy production.

Keywords

Glycolysis; hexokinase; phosphofructokinase; 1,3-bisphosphoglycerate; aldolase; phosphoenolpyruvate; pyruvate; ATP

Traditional Glycolysis Recap

Glycolysis is a cytoplasmic pathway which breaks down glucose into two three-carbon compounds and generates energy. Glycolysis is used by all cells in the body for energy generation. Glucose is trapped by phosphorylation, with the help of the enzyme hexokinase. Adenosine triphosphate (ATP) is used in this reaction and the product, glucose-6-Phosphate (G-6-P), inhibits hexokinase. This is an irreversible reaction. G-6-P is isomerized into its ketose form, fructose-6-Phosphate (F-6-P), by phosphohexose isomerase.
F-6-P is further phosphorylated by phosphofructokinase to fructose 1,6-bisphosphate (F1,6 bisP). This reaction is irreversible and is the principal regulatory step. Aldolase cleaves F1,6 bisP into glyceraldehyde-3-P and dihydroxyacetone phosphate (DHAP), which are interconverted by the enzyme phosphotriose isomerase.
Glyceraldehyde-3-P is oxidized by NAD+-dependent dehydrogenase forming 1,3-bisphosphoglycerate.
1,3-Bisphosphoglycerate has a high-energy acyl phosphate bond and carries out substrate-level phosphorylation generating ATP. The participating enzyme is phosphoglycerate kinase and 3-phosphoglycerate is formed. Phosphoglycerate mutase isomerizes 3-phosphoglycerate to 2-phosphoglycerate. 2-Phosphoglycerate is dehydrated by enolase to form phosphoenolpyruvate, the second compound capable of substrate-level phosphorylation in glycolysis. Pyruvate kinase transfers the phosphate group of phosphoenolpyruvate to adenosine diphosphate (ADP) and pyruvate is formed.
Pyruvate enters the Krebs cycle in aerobic conditions, and in anaerobic conditions it forms lactate which helps in the generation of NAD+ for the continuation of glycolysis. Pyruvate is converted to acetyl-CoA by pyruvate dehydrogenase complex, which is an irreversible step. Pyruvate enters the Krebs cycle for further energy production.
Glycolysis is one of the basic metabolic pathways, and is crucial for the life of most organisms. We start this book with the pathway showing the reactions, substrates, products, enzymes, and other involved molecules of glycolysis (Figs. 1.1 and 1.2).
image

Figure 1.1 Glycolysis pathway.
image

Figure 1.2 A poem to remember the glycolysis intermediates.

Rhyming Glycolysis

image

The words in the poem in Fig. 1.2 are related to the intermediates of glycolysis. Red-colored letters are taken from molecules or are short forms of molecules. The "P" in peg in the second and fourth lines indicates the phosphate group, it is cut in two to denote the splitting reaction. "BPG," the name of the protagonist, is a short form of 1,3-bisphosphoglycerate. As it is a high-energy compound, the following line gives the description “He is very strong.” "Three two one" indicates that one phosphate molecule is shifted from the third to the second position. "PEP" in red in the next line is phosphoenolpyruvate, and "P" in the last line is for pyruvate (Fig. 1.3).
image

Figure 1.3 Mnemonic diagram to remember the glycolysis reactions.

Glycolysis Mnemonic Diagram

In glycolysis, glucose (6C) is broken into two pyruvate (3C) molecules.
It has 10 letters in its name and 10 reactions.
Write the word "GLYCOLYSIS" and write the numbers starting from "G" on the left-hand side.
Draw a line at the center of the name dividing it into two parts. The first five are the preparatory steps and the second five are the pay-off or energy-generating steps. Of the preparatory steps, the first three are priming and the subsequent two are splitting steps.
ATP is consumed in steps 1 and 3, so ATP is shown entering at letters "G" and "Y."
The next step is cleavage of fructose 1,6-bisphosphate into glyceraldehyde-3-P and DHAP, indicated by "Cut."
DHAP is isomerized into glyceraldehyde-3-P; this is indicated by the mirror in the "O" of "ISO."
Inorganic phosphate enters along with NAD+ in the following step, therefore "
ent
" is depicted entering "L."
ATP is generated in steps 7 and 10, hence ATP is leaving letters "Y" and "S."
The eighth step is the isomerization reaction in which the molecular formula is "SAME" and only the position of phosphate is changed.
The ninth reaction is dehydration, which is depicted by water coming out of a pipe.
This is how all 10 reactions of glycolysis can be remembered.
Chapter 2

Citric Acid Cycle

Abstract

The citric acid cycle utilizes mitochondrial enzymes. The first step is fusion of the acetyl group of acetyl-CoA with oxaloacetate, catalyzed by citrate synthase. CoA-SH and heat are released and citrate is produced. Citrate is isomerized by dehydration and rehydration to isocitrate. The enzyme aconitase catalyzes these two steps using cis-aconitate as the intermediate. The next two steps are catalyzed by isocitrate dehydrogenase. Dehydrogenation of isocitrate forms oxalosuccinate which decarboxylates to alpha-ketoglutarate. Alpha-ketoglutarate is further oxidatively decarboxylated by alpha-ketoglutarate dehydrogenase—a multienzyme complex. Succinyl-CoA is formed in this unidirectional reaction.
Succinate thiokinase co...

Inhaltsverzeichnis

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. List of Figures
  7. List of Tables
  8. Preface
  9. Acknowledgments
  10. Chapter 1. Glycolysis
  11. Chapter 2. Citric Acid Cycle
  12. Chapter 3. Electron Transport Chain
  13. Chapter 4. Beta Oxidation of Fatty Acids
  14. Chapter 5. Fatty Acid Biosynthesis
  15. Chapter 6. Cholesterol Structure
  16. Chapter 7. Cholesterol Synthesis
  17. Chapter 8. Heme Synthesis
  18. Chapter 9. Porphyrias
  19. Chapter 10. Urea Synthesis
  20. Chapter 11. Urea Cycle Disorders
  21. Chapter 12. Glycogen Storage Disorders
  22. Chapter 13. Ceramide Structure and Derivatives
  23. Chapter 14. Lipid Storage Disorders/Sphingolipidoses
  24. Chapter 15. Mucopolysaccharidoses
  25. Chapter 16. Prostaglandin Synthesis
  26. Chapter 17. Purine Structures
  27. Chapter 18. Purine de novo Synthesis
  28. Chapter 19. Pyrimidine Structure
  29. Chapter 20. Pyrimidine de novo Synthesis
  30. Exercises
  31. Further Reading
Zitierstile für Sweet Biochemistry

APA 6 Citation

Kumari, A. (2017). Sweet Biochemistry ([edition unavailable]). Elsevier Science. Retrieved from https://www.perlego.com/book/1837505/sweet-biochemistry-remembering-structures-cycles-and-pathways-by-mnemonics-pdf (Original work published 2017)

Chicago Citation

Kumari, Asha. (2017) 2017. Sweet Biochemistry. [Edition unavailable]. Elsevier Science. https://www.perlego.com/book/1837505/sweet-biochemistry-remembering-structures-cycles-and-pathways-by-mnemonics-pdf.

Harvard Citation

Kumari, A. (2017) Sweet Biochemistry. [edition unavailable]. Elsevier Science. Available at: https://www.perlego.com/book/1837505/sweet-biochemistry-remembering-structures-cycles-and-pathways-by-mnemonics-pdf (Accessed: 15 October 2022).

MLA 7 Citation

Kumari, Asha. Sweet Biochemistry. [edition unavailable]. Elsevier Science, 2017. Web. 15 Oct. 2022.