Chemical Engineering Fluid Mechanics
eBook - ePub

Chemical Engineering Fluid Mechanics

Ron Darby, Raj P. Chhabra

  1. 555 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Chemical Engineering Fluid Mechanics

Ron Darby, Raj P. Chhabra

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Chemical Engineering Fluid Mechanics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Chemical Engineering Fluid Mechanics von Ron Darby, Raj P. Chhabra im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Chemistry. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2016
ISBN
9781498724449
1
Basic Concepts
“Engineering is learning how to make a decision with insufficient information.”
—Anonymous
I. FUNDAMENTALS
A. INTRODUCTION AND SCOPE
The understanding of, and ability to predict, the flow behavior of fluids is fundamental to all aspects of the chemical engineering profession. Such behavior includes the relationship between the (driving) forces and the flow rates of various classes of fluids, and the characteristics of the equipment used to contain/handle/process these fluids. A wide variety of fluids with different properties may be encountered by the chemical engineer in the industrial applications that may be of concern in various chemical or petroleum process industries, biological or food and pharmaceutical industries, polymer and materials processing industries, etc. These properties range from common simple incompressible (Newtonian) liquids, that is, fluids such as water, oils, various petroleum fractions, etc., to complex nonlinear (non-Newtonian) fluids such as pastes, emulsions, foams, suspensions, high-molecular-weight polymeric fluids, biological fluids (e.g., blood), etc. as well as compressible (gaseous) fluids such as air, N2, CO2, etc. This book is concerned with the fundamental principles that govern the flow behavior of each of these types of fluids, as well as the resulting basic relationships needed to predict their behavior (relations between flow rates, pressures, forces on solid boundaries, etc.) and the corresponding analysis of a wide variety of equipment and practical situations commonly found in various industries. These principles are also applicable to such situations as the flow of blood in vessels, transport of sludge and silt in rivers and streams, pneumatic conveying of particles, the trajectory of a pitched baseball, etc.
B. BASIC LAWS
The fundamental principles that apply to the analysis of fluid flows are the three “conservation laws”:
1. Conservation of mass
2. Conservation of energy (the first law of thermodynamics)
3. Conservation of momentum (Newton’s second law of motion)
To which may be added
4. The second law of thermodynamics (i.e., will it work or not?)
5. Conservation of dimensions (e.g., the “fruit salad” law*)
6. Conservation of dollars (economics)
Although the second law of thermodynamics (#4) is not strictly a “conservation law,” it provides a practical limitation on what processes are possible or are most likely. It states that a process can occur spontaneously only if it goes from a state of higher energy to the one of lower energy (e.g., water will flow downhill by itself, but it must be “pushed” by expending energy in order to make it flow uphill).
These basic conservation laws provide relations between various fluid properties and operating conditions at different points within a system (see Section IV). In addition, appropriate rate or transport models are required that describe the rate at which these conserved quantities are transported from one part of the system to another. For example, if the mass of a given fluid element is m (e.g., kg or lbm), the rate at which that mass is transported is the mass flow rate, ṁ (e.g., kg/s or lbm/s). These conservation and rate laws are the starting point for the solution to every engineering problem.
The conservation of energy, for example, is often expressed in terms of the thermodynamic (equilibrium) properties of the system. This implies a system that is in a state of static equilibrium. However, most systems of interest to us are not at equilibrium but are dynamic (i.e., in motion) and it is the rate of transport of energy, mass, or momentum which is of interest. In order to transport energy at a finite rate, this equilibrium must be disturbed and additional “nonequilibrium” energy is required that depends upon the rate of transport. This “extra” energy is expended (e.g., dissipated or “lost”) by transformation from useful mechanical energy to low-grade thermal energy in order to transport mass, energy, or momentum at a finite rate. The farther from equilibrium the system is (i.e., the faster it goes), the greater is the resistance to motion (“friction”) and the greater is the energy that is “lost” or dissipated to a less useful low-grade thermal energy in order to overcome this resistance. In more ...

Inhaltsverzeichnis

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Table of Contents
  7. Preface
  8. About Professor Darby
  9. Acknowledgments
  10. Unit Conversion Factors
  11. Chapter 1 Basic Concepts
  12. Chapter 2 Dimensional Analysis and Scale-Up
  13. Chapter 3 Fluid Properties in Perspective
  14. Chapter 4 Fluid Statics
  15. Chapter 5 Conservation Principles
  16. Chapter 6 Pipe Flow
  17. Chapter 7 Internal Flow Applications
  18. Chapter 8 Pumps and Compressors
  19. Chapter 9 Compressible Flows
  20. Chapter 10 Flow Measurement
  21. Chapter 11 Safety Relief and Control Valves
  22. Chapter 12 External Flows
  23. Chapter 13 Fluid-Solid Separations by Free Settling
  24. Chapter 14 Flow in Porous Media
  25. Chapter 15 Fluidization and Sedimentation
  26. Chapter 16 Two-Phase Flow
  27. Appendix A: Viscosities and Other Properties of Gases and Liquids
  28. Appendix B: Generalized Viscosity Plot
  29. Appendix C: Properties of Gases
  30. Appendix D: Pressure–Enthalpy Diagrams for Various Compounds
  31. Appendix E: Microscopic Conservation Equations in Rectangular, Cylindrical, and Spherical Coordinates
  32. Appendix F: Standard Steel Pipe Dimensions and Capacities
  33. Appendix G: Flow of Water/Air through Schedule 40 Pipe
  34. Appendix H: Typical Pump Head Capacity Range Charts
  35. Appendix I: Fanno Line Tables for Adiabatic Flow of Air in a Constant Area Duct
  36. Index
Zitierstile für Chemical Engineering Fluid Mechanics

APA 6 Citation

Darby, R., & Chhabra, R. (2016). Chemical Engineering Fluid Mechanics (3rd ed.). CRC Press. Retrieved from https://www.perlego.com/book/2192919/chemical-engineering-fluid-mechanics-pdf (Original work published 2016)

Chicago Citation

Darby, Ron, and Raj Chhabra. (2016) 2016. Chemical Engineering Fluid Mechanics. 3rd ed. CRC Press. https://www.perlego.com/book/2192919/chemical-engineering-fluid-mechanics-pdf.

Harvard Citation

Darby, R. and Chhabra, R. (2016) Chemical Engineering Fluid Mechanics. 3rd edn. CRC Press. Available at: https://www.perlego.com/book/2192919/chemical-engineering-fluid-mechanics-pdf (Accessed: 15 October 2022).

MLA 7 Citation

Darby, Ron, and Raj Chhabra. Chemical Engineering Fluid Mechanics. 3rd ed. CRC Press, 2016. Web. 15 Oct. 2022.