Mathematical Biology And Biological Physics
eBook - ePub

Mathematical Biology And Biological Physics

Rubem P Mondaini

  1. 380 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Mathematical Biology And Biological Physics

Rubem P Mondaini

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

-->

This is a book on interdisciplinary topics of the Mathematical and Biological Sciences. The treatment is both pedagogical and advanced in order to motivate research students as well as to fulfill the requirements of professional practitioners. There are comprehensive reviews written by senior experts on the important problems of growth and agglomeration in biology, on the algebraic modelling of the genetic code and on multi-step biochemical pathways.

There are new results on the state of the art research in the pattern recognition of probability distribution of amino acids, on somitogenesis through reaction-diffusion models, on the mathematical modelling of infectious diseases, on the biophysical modelling of physiological disorders, on the sensitive analysis of parameters of malaria models, on the stability and hopf bifurcation of ecological and epidemiological models, on the viral infection of bee colonies and on the structure and motion of proteins. All these contributions are also strongly recommended to professionals from other scientific areas aiming to work on these interdisciplinary fields.

--> Contents:

  • Preface
  • Editorial Board of the BIOMAT Consortium
  • Professor C A Floudas — In Memoriam
  • Comprehensive Introduction to Agglomeration and Growth and Models (R Kerner)
  • The Pattern Recognition of Probability Distributions of Amino Acids in Protein Families (R P Mondaini, S C de Albuquerque Neto)
  • Modelling the Electrical Activity of the Heart (R A Barrio, I Dominguez-Roman, M A Quiroz-Juarez, O Jimenez-Ramirez, R Vazquez-Medina, J L Aragon)
  • How the Interval Between Primary and Booster Vaccination Affects Long-Term Disease Dynamics (A Shoukat, A L Espindola, G Röst, S M Moghadas)
  • Stability and Hopf Bifurcation in a Multi-Delayed Eco-Epidemiological Model (D Adak, N Bairagi)
  • Propagation of Extrinsic Perturbation in Multistep Biochemical Pathways (A G Nedungadi, S Sinha)
  • Catastrophic Transitions in Coral Reef Biome Under Invasion and Overfishing (S Pal, J Bhattacharyya)
  • Dynamics of Hepatitis C Viral Load with Optimal Control Treatment Strategy (R Keval, S Banerjee)
  • Somitogenesis and Turing Pattern (A Lemarchand, L Signon, B Nowakowski)
  • An Epidemiological Model of Viral Infections in a Varroa -Infested Bee Colony: The Case of a Bee-Dependent Mite Population Size (S Bernardi, E Venturino)
  • Does Sensitivity Analysis Validate Biological Relevance of Parameters in Model Development? Revisiting Two Basic Malaria Models (S Mandal, S Sinha)
  • Subcortical Homeostatic Circuitry Modulates Brain Waves and Behavioral Adaptation: Relevance for the Emergent Multidiscipline of Social Neuroscience (Limei Zhang de Barrio, V S Hernández, L E Eiden)
  • Protein Structure Estimation from Incomplete NMR Data (Z Li, S Lin, Y Li, Q Lei, Q Zhao)
  • Decrypting How Proteins Move and Change Their Shape (E Laine)
  • Deterministic and Stochastic Model for HLTV-I Infection of CD4 + T Cells (P K Srivastava)
  • Study of Global Stability and Optimal Treatment for An Infectious Disease Model (A Kumar, P K Srivastava, A Yadav)
  • Global Stability of a Modified HIV Infection Model with Saturation Incidence (J Yang, Q Zhang, L Wang)
  • A Survey of Geometric Techniques for Pattern Recognition of Probability of Occurrence of Amino Acids in Protein Families (R P Mondaini)
  • Symmetry and Minimum Principle at the Basis of the Genetic Code (A Sciarrino, P Sorba)
  • Index

-->
--> Readership: Undergraduates, graduates, researchers and all practitioners in the interdisciplinary fields of Mathematical Biology, Biological Physics and Mathematical Modelling of Biosystems. -->
Mathematical Modelling;Mathematical Biology;Biomathematics;Biophysics;Mathematical Physics0

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Mathematical Biology And Biological Physics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Mathematical Biology And Biological Physics von Rubem P Mondaini im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Mathématiques & Mathématiques appliquées. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
WSPC
Jahr
2017
ISBN
9789813227897

SYMMETRY AND MINIMUM PRINCIPLE AT THE BASIS OF THE GENETIC CODE

A. SCIARRINO
I.N.F.N., Sezione di Napoli
Complesso Universitario di Monte S. Angelo
Via Cinthia, I-80126 Napoli, Italy
E-mail: [email protected]
P. SORBA
LAPTH,Laboratoire d’Annecy-le-Vieux de Physique Théorique CNRS
Université de Savoie
Chemin de Bellevue, BP 110
F-74941 Annecy-le-Vieux, France
E-mail: [email protected]
The importance of the notion of symmetry in physics is well established: could it also be the case for the genetic code? In this spirit, a model for the Genetic Code based on continuous symmetries and entitled the “Crystal Basis Model” has been proposed a few years ago and applied to different problems, such as the elaboration and verification of sum rules for codon usage probabilities, relations between physico-chemical properties of amino-acids and some predictions. Defining in this context a “bio-spin” structure for the nucleotides and codons, the interaction between a couple of codon-anticodon can simply be represented by a (bio) spinspin potential. Then, imposing the minimum energy principle, an analysis of the evolution of the genetic code can be performed with good agreement with the generally accepted scheme. A more precise study of this interaction model provides informations on codon bias, consistent with data.

1.Introduction

The sciences of life offer an important domain of investigations for the physicist. Already about seventy years ago, Erwin Schrödinger provided in his book “What is life?1 some ideas about the possible role of a “new physics” in this domain, imagining for example mutations to be directly linked to quantum leads. As can be read there:
“living matter, while not eluding the “laws of physics” as established up to date, is likely to involve “other laws of physics” hitherto unknown, which however, once they have been revealed, will form just as integral a part of science as the former”.
Among the mathematical tools which played in the second part of the twentieth century and are still playing an essential role in theoretical physics, and in particular in particle physics, is the one of Group theory, this concept being usually called in physics Symmetry, or Invariance. It is this notion which is at the basis of our model for describing the genetic code and developing a theoretical approach of its biological properties.
The idea of symmetry, or invariance, can be used in different ways, but to illustrate the one we need today, let us take an example. Consider an electron e. An important physical quantity attached to it is its spin. And actually, as you know, there are two states for the spin of the electron, called up and down, or + and − (or +1/2 and −1/2 following the notation you choose, and we use to say that the spin of e is 1/2). Mathematically, these two states can be seen as orthogonal vectors of the 2-dim complex Euclidean space,a on which acts the group of 2 by 2 unitary matrices, called
image
(2), transforming one state into another one. It is a Lie group and considering its Lie algebra, there exists an element on it, a 2 × 2 matrix with eigenvalues +1/2 and −1/2 associated to the eigenvectors which are the states up and down. If you consider a vector boson, (e.g. the W boson which mediates the weak interaction) there are three states of spin, denoted +1, 0, −1 and we can represent the elements of the group
image
(2) by 3 × 3 matrices acting on a 3-dim Hilbert space. It is this notion that we will use to construct our model describing the genetic code.
At this point, let us mention two essential aspects of genetics on which we propose to use our model: the DNA structure on one hand and the mechanism of polypeptide fixation from codons on the other hand. But, it might be good to start by reminding some essential features on the genetic code. First, as well known, the DNA macromolecule is constituted by two chains of nucleotides wrapped in a double helix shape. There are four different nucleotides, characterized by their bases: adenine (A) and guanine (G) deriving from purine, and cytosine (C) and thymine (T) coming from pyrimid...

Inhaltsverzeichnis

  1. Cover Page
  2. Title
  3. Copyright
  4. Contents
  5. Preface
  6. Editorial Board of the BIOMAT Consortium
  7. Professor C.A. Floudas — In Memoriam
  8. Comprehensive Introduction to Agglomeration and Growth and Models
  9. The Pattern Recognition of Probability Distributions of Amino Acids in Protein Families
  10. Modelling the Electrical Activity of the Heart
  11. How the Interval Between Primary and Booster Vaccination Affects Long-Term Disease Dynamics
  12. Stability and Hopf Bifurcation in a Multi-delayed Eco-epidemiological Model
  13. Propagation of Extrinsic Perturbation in Multistep Biochemical Pathways
  14. Catastrophic Transitions in Coral Reef Biome under Invasion and Overfishing
  15. Dynamics of Hepatitis C Viral Load with Optimal Control Treatment Strategy
  16. Somitogenesis and Turing Pattern
  17. An Epidemiological Model of Viral Infections in a Varroa-infested Bee Colony: The Case of a Bee-dependent Mite Population Size
  18. Does Sensititivity Analysis Validate Biological Relevance of Parameters in Model Development? Revisiting Two Basic Malaria Models
  19. Subcortical Homeostatic Circuitry Modulates Brain Waves and Behavioral Adaptation: Relevance for the Emerging Multidiscipline of Social Neuroscience
  20. Protein Structure Estimation from Incomplete NMR Data
  21. Decrypting How Proteins Move and Change their Shape
  22. Deterministic and Stochastic Model for HLTV-I Infection of CD4+ T Cells
  23. Study of Global Stability and Optimal Treatment for An Infectious Disease Model
  24. Global Stability of a Modified HIV Infection Model with Saturation Incidence
  25. A Survey of Geometric Techniques for Pattern Recognition of Probability of Occurrence of Amino Acids in Protein Families
  26. Symmetry and Minimum Principle at the Basis of the Genetic Code
  27. Index
Zitierstile für Mathematical Biology And Biological Physics

APA 6 Citation

[author missing]. (2017). Mathematical Biology And Biological Physics ([edition unavailable]). World Scientific Publishing Company. Retrieved from https://www.perlego.com/book/854034/mathematical-biology-and-biological-physics-pdf (Original work published 2017)

Chicago Citation

[author missing]. (2017) 2017. Mathematical Biology And Biological Physics. [Edition unavailable]. World Scientific Publishing Company. https://www.perlego.com/book/854034/mathematical-biology-and-biological-physics-pdf.

Harvard Citation

[author missing] (2017) Mathematical Biology And Biological Physics. [edition unavailable]. World Scientific Publishing Company. Available at: https://www.perlego.com/book/854034/mathematical-biology-and-biological-physics-pdf (Accessed: 14 October 2022).

MLA 7 Citation

[author missing]. Mathematical Biology And Biological Physics. [edition unavailable]. World Scientific Publishing Company, 2017. Web. 14 Oct. 2022.