Grundlagen der Elektronenspektroskopie
eBook - ePub

Grundlagen der Elektronenspektroskopie

Theorie der Anregung und Deaktivierung von Molekülen

  1. German
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Grundlagen der Elektronenspektroskopie

Theorie der Anregung und Deaktivierung von Molekülen

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Quantenmechanische Aspekte der Erzeugung und Deaktivierung angeregter Elektronenzustände stellen die theoretische Grundlage der Elektronenspektroskopie dar. Ausgehend vom Experiment wird zunächst die Beschreibung von Molekülzuständen durch Wellenfunktionen eingeführt. Didaktisch geschickt folgt eine ausführliche Diskussion der Erzeugung von angeregten Zuständen, zusätzlich wird auch das Thema "optische Aktivität" erläutert. Die verschiedenen Kanäle der Deaktivierung angeregter Zustände werden umfassend diskutiert, mit einem besonderen Schwerpunkt auf strahlungsloser Deaktivierung durch Elektronenübertragung. Aufbauend auf langjährigen Vorlesungsnotizen optimal zum vorlesungsbegleitenden Lernen, Dank des modularen Aufbaues aber auch zum punktuellen Nachschlagen und Auffrischen von Wissen geeignet!

Häufig gestellte Fragen

Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja, du hast Zugang zu Grundlagen der Elektronenspektroskopie von Hermann Rau im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Naturwissenschaften & Physikalische & theoretische Chemie. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

1
Experimentelle Daten

UV/VIS-Spektroskopie oder Elektronenspektroskopie nennt man die Messung, Auswertung und Deutung der Phänomene der Wechselwirkung von elektromagnetischer Strahlung des sichtbaren und ultravioletten Spektralbereichs mit Materie. Diese Vorlesungen beschränken sich auf die Elektronenspektroskopie an Molekülen bei zeitlich kontinuierlicher Anregung.

1.1 Was beobachtet man bei Versuchen zur UV/VIS-Spektroskopie?

Bei der Absorption von Licht beobachtet man die Abschwächung der Intensität eines Lichtstrahls beim Durchgang durch eine Probe, deren Ausmaß, Frequenzabhängigkeit und Polarisation für das Probenmaterial charakteristisch ist. Die Absorption ist normalerweise wellenlängenabhängig, sie wird durch einen Graphen, das Absorptionsspektrum, dargestellt, in dem die Extinktion E (engl. absorbance A)
(1.1)
math1_1.png
(dimensionslos) als Funktion der Wellenlänge λ aufgetragen ist. I0 ist die auf die Probe auffallende Strahlungsintensität1), I die Intensität der Strahlung nach Durchgang durch die Probe. Besonders bei verdünnten Lösungen, wo das Lambert-Beer’sche Gesetz
(1.2)
math1_2.png
gilt, ist die Verwendung des Extinktionskoeffizienten ελ (l mol−1 cm−1), also der auf die Einheitskonzentration (in mol l−1) und Einheitsschichtdicke (in cm) bezogenen Extinktion, die bessere Darstellung.2) Manchmal wird auch der Absorptionsquerschnitt eines Moleküls als σ = (ln 10/NA)ε (cm2) als Absorptionsmaß herangezogen.
Der Graph E = f(λ) bzw. E = f(
v2.webp
) ist das Absorptionsspektrum, das für jeden Stoff eine charakteristische Eigenschaft ist. Die Darstellung in Wellenlängen λ ist nicht energielinear, deshalb werden die Spektren oft in Wellenzahlen
v2.webp
= 1/λ (in cm−1) dargestellt, denn dann entspricht einem bestimmten Abschnitt auf der Wellenzahlenskala der gleiche Energiebetrag unabhängig davon, ob das UV- oder IR-Spektralgebiet betrachtet wird. In der Wellenlängendarstellung sind die Absorptionsbereiche im UV im Vergleich zur Wellenzahlendarstellung visuell schmaler, im roten Spektralgebiet ist es umgekehrt. Trotzdem ist die Wellenlängenskala weit verbreitet, wahrscheinlich, weil die Spektren bei Gitterspektrometern in Wellenlängen direkt anfallen.
Im Spektrum von Molekülen lassen sich bestimmte mehr oder weniger gut gegeneinander abgegrenzte Wellenlängengebiete feststellen. Ein solches Absorptionsgebiet wird Bande genannt, es entspricht einem bestimmten Elektronenübergang, wie wir später besprechen werden. Dieser Elektronenübergang bestimmt auch die Größe E bzw. ε, oft auch selbst Intensität genannt. Die Intensität kann für dieselbe Probe über Zehnerpotenzen variieren, weshalb sie oft logarithmisch aufgetragen wird (Abb. 1.1). Man spricht von „verbotenen“ und „erlaubten“ Übergängen. Die Absorptionsintensität einer Bande kann auch in der Größe Oszillatorstärke
images
Abb. 1.1 Absorptionsspektren (a) schematisch log ε vs.
v2.webp
(b) Anthracen (—), trans-Azobenzol(---), linear E vs. λ.
(1.3)
images
gefasst werden. f ist dimensionslos, und in der Zahl vor dem Integral sind nur Naturkonstanten zusammengefasst.
Wird nicht natürliches, sondern linear polarisiertes Licht, d. h. Licht, dessen elektrischer Feldvektor nur in einer, der Polarisationsebene, schwingt, für die Absorptions- oder Emissionsspektroskopie eingesetzt, so kann man unter Ausrichtung der Moleküle der Probe relativ zur Polarisationsrichtung des Lichts (Fixierung des molekularen und äußeren Koordinatensystem gegeneinander) verschiedene Absorptionsintensitäten für verschiedene Polarisationsrichtungen beobachten (Abb. 1.2). Die dimensionslose Polarisation
images
Abb. 1.2 Absorption eines Cyaninfarbstoffes in Polyvinylalkohol-Folie (—). Bei Festlegung des molekularen und äußeren Koordinaten-system gegeneinander durch Streckung der Folie: lineare Polarisation des Lichts (---) parallel und (…) senkrecht zur Streckrichtung. Polarisation der längstwelligen Bande in Richtung der Längsachse, der kürzerwelligen senkrecht zur Längsachse.
(1.4)
images
wird dann durch die unterschiedliche Absorption eines linear polarisierten Lichtstrahls und des um 90° gedrehten Pendants gemessen. Bei linear polarisiertem Licht erhält man eine Information über die Richtung der Ladungsverschiebung im Molekül beim Elektronenübergang, die Polarisationsrichtung des Übergangs.
Bei Verwendung von zirkular polarisiertem Licht erhält man Information über eine Moleküleigenschaft namens Chiralität. Es wird eine Größe Circulardichroismus definiert, die molare Elliptizität, die die Differenz der Absorption von links- und rechtspolarisiertem Licht charakterisiert
(1.5)
math1_5.png
mit der gebräuchlichen historisch bedingten Einheit grad cm2 dmol−1, [Θ] kann auch negativ sein. Der Graph [Θ] gegen Wellenlänge oder Wellenzahl ist das CD-S...

Inhaltsverzeichnis

  1. Cover
  2. Inhaltsverzeichnis
  3. Titelseite
  4. Autor
  5. Impressum
  6. Vorwort
  7. Einleitung
  8. 1: Experimentelle Daten
  9. Teil I: Zustände
  10. Teil II: Absorption – Erzeugung von angeregten Zuständen
  11. Teil III: Deaktivierung angeregter Zustände
  12. Anhang A: Die zeitliche Entwicklung eines präparierten Zustands unter einer Störung
  13. Anhang B: Berechnungen
  14. Anhang C: Übergänge eines Systems von einer auf die andere Potenzialfläche
  15. Anhang D: Ableitung der Schwingungsfunktion χn(ξ) nach der Koordinate
  16. Anhang E: Skizze der Entwicklung der Formel von Levich und Dogonadze
  17. Anhang F: Fermi’s Golden Rule
  18. Literaturverzeichnis
  19. Stichwortverzeichnis
  20. End User License Agreement