A Heat Transfer Textbook
eBook - ePub

A Heat Transfer Textbook

Fourth Edition

John H Lienhard, John H Lienhard

Compartir libro
  1. 768 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

A Heat Transfer Textbook

Fourth Edition

John H Lienhard, John H Lienhard

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' insight into related phenomena. Three introductory chapters form a minicourse in heat transfer, covering all of the subjects discussed in detail in subsequent chapters. This unique and effective feature introduces heat exchangers early in the development, rather than at the end. The authors also present a novel and simplified method for dimensional analysis, and they capitalize on the similarity of natural convection and film condensation to develop these two topics in a parallel manner. Worked examples and end-of-chapter exercises appear throughout the book, along with well-drawn, illuminating figures.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es A Heat Transfer Textbook un PDF/ePUB en línea?
Sí, puedes acceder a A Heat Transfer Textbook de John H Lienhard, John H Lienhard en formato PDF o ePUB, así como a otros libros populares de Technology & Engineering y Applied Sciences. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2013
ISBN
9780486318370
Edición
4

PART III

CONVECTIVE HEAT TRANSFER

6. Laminar and turbulent boundary layers

In cold weather, if the air is calm, we are not so much chilled as when there is wind along with the cold; for in calm weather, our clothes and the air entangled in them receive heat from our bodies; this heat...brings them nearer than the surrounding air to the temperature of our skin. But in windy weather, this heat is prevented...from accumulating; the cold air, by its impulse...both cools our clothes faster and carries away the warm air that was entangled in them.
notes onThe General Effects of Heat”,
Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s perception about forced convection (above) represents a very correct understanding of the way forced convective cooling works. When cold air moves past a warm body, it constantly sweeps away warm air that has become, as Black put it, “entangled” with the body and replaces it with cold air. In this chapter we learn to form analytical descriptions of these convective heating (or cooling) processes.
Our aim is to predict h and
image
, and it is clear that such predictions must begin in the motion of fluid around the bodies that they heat or cool. Once we understand these fluid motions, we can begin the process of predicting how much heat they add or remove.

Flow boundary layer

Fluids flowing past solid bodies adhere to them, so a region of variable velocity must be built up between the body and the free fluid stream, as indicated in Fig. 6.1. This region is called a boundary layer, which we abbreviate as b.l. The b.l. has a thickness, δ. The boundary layer thickness is arbitrarily defined as the distance from the wall at which the flow velocity approaches to within 1% of u. The boundary layer is normally very thin in comparison with the dimensions of the body immersed in the flow.1
image
Figure 6.1 A boundary layer of thickness δ.
The first step we must take before we can predict h is the mathematical description of the boundary layer. This was first done by Prandtl2 (see Fig. 6.2) and his students, starting in 1904, and it depended upon simplifications he could make after he recognized how thin the layer must be.
The dimensional functional equation for the boundary layer thickness on a flat surface is
image
where χ is the length along the surface and ρ and μ are the fluid density in kg/m3 and the dynamic viscosity in kg/m.s. We have five variables in kg, m, and s, so we anticipate two pi-groups:
image
Figure 6.2 Ludwig Prandtl (1875–1953). (Courtesy of Appl. Mech. Rev. [6.1])
image
where ν is the kinematic viscosity μ/ρ and Reχ is called the Reynolds number. It characterizes the relative influences of inertial and viscous forces in a fluid problem. The subscript on Re—χ in this case—tells what length it is based upon.
We discover shortly that the actual form of eqn. (6.1) for a flat surface, where u remains constant, is
image
which means that if the velocity is great...

Índice