Automatic Architecture
eBook - ePub

Automatic Architecture

Motivating Form after Modernism

Sean Keller

  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Automatic Architecture

Motivating Form after Modernism

Sean Keller

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

In the 1960s and '70s, architects, influenced by recent developments in computing and the rise of structuralist and poststructuralist thinking, began to radically rethink how architecture could be created. Though various new approaches gained favor, they had one thing in common: they advocated moving away from the traditional reliance on an individual architect's knowledge and instincts and toward the use of external tools and processes that were considered objective, logical, or natural. Automatic architecture was born.The quixotic attempts to formulate such design processes extended modernist principles and tried to draw architecture closer to mathematics and the sciences. By focusing on design methods, and by examining evidence at a range of scales—from institutions to individual buildings— Automatic Architecture offers an alternative to narratives of this period that have presented postmodernism as a question of style, as the methods and techniques traced here have been more deeply consequential than the many stylistic shifts of the past half century. Sean Keller closes the book with an analysis of the contemporary condition, suggesting future paths for architectural practice that work through, but also beyond, the merely automatic.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Automatic Architecture un PDF/ePUB en línea?
Sí, puedes acceder a Automatic Architecture de Sean Keller en formato PDF o ePUB, así como a otros libros populares de Arquitectura y Arquitectura general. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2018
ISBN
9780226496528

1.

FENLAND TECH:

DESIGN METHODS AT CAMBRIDGE

IN THE FALL OF 2004 the General Board of the Faculties of the University of Cambridge recommended closing the school’s department of architecture. Although others suggested that financial pressures were to blame, the board stated that their recommendation was based purely on academic grounds, specifically, “concerns within the University about aspects of the Department’s research profile going back over two decades.”1 The primary evidence for this concern was a weak rating—by Cambridge standards—in a national assessment, which influenced the allocation of funding. Opponents of the closure, including the acting head of the department, Marcial Echeñique, argued that the assessment was flawed because it improperly evaluated architecture as a science and failed to recognize the distinct type of research pursued by design.2 While the guidelines used by the assessment panel did not suggest that architecture be considered as a science, and while they noted that design work would be taken into consideration, the assessment criteria greatly emphasized typical academic markers of research accomplishment such as publication in peer-reviewed venues.3 At issue here was not only the relative importance given to research versus teaching at a leading university but the particular difficulty of fitting architecture into an academic framework defined by research. After months of criticism in the press, protests on campus, and a restructuring proposal from the department that pledged to focus full-time faculty on research, the general board relented and allowed the department to remain open.
Particular irony surrounds this round of the long-running debates over architecture’s place in academia and over its relationship to science. For at least two decades, from the 1950s through the 1970s, much of the Cambridge department—including Echeñique—had been explicitly committed to establishing architecture as a science, as a field that would finally reject its artistic pretensions and produce a body of quantifiable knowledge through research. We should understand the reversal of the department’s attitude over five decades not as inconsistency or opportunism or even mere change but as an indication of architecture’s persistently troubled disciplinary boundaries over the past half century and of the particular difficulties faced by architecture within academic contexts that have become ever more dominated by the sciences.
Unlike France, where formal architectural education began as early as 1671 with the founding of the Académie Royale d’Architecture, architectural training in England continued to be based on apprenticeships well into the nineteenth century. The first university instruction began as late as 1893 at Liverpool, and it was only in 1911 that the School of Architecture there offered a full-time degree with a final examination approved by the Royal Institute of British Architects (RIBA).4 At Cambridge, the School of Architectural Studies was established in 1912 under the direction of Edward Schroeder Prior, a practicing architect and scholar of medieval art and architecture. Prior’s inaugural lecture argued that the school should include a program of “research and experiment” that would undertake both a “systematic examination of first principles” and practical investigations of materials, particularly the new medium of reinforced concrete.5 In this way, he established architecture within the heart of the English academy and set architectural studies at Cambridge on a path of technical and theoretical research.
Significant expansion of the school would come only after the upheavals of the Second World War with the appointment of Leslie Martin as head and as the university’s first professor of architecture in 1956. The son of an architect, Martin, whom Richard Rogers has characterized as “the doyen of postwar British architecture,” first led an architecture school in 1934, when, at the remarkable age of twenty-six, he was made head of the School of Architecture at the University of Hull.6 Embodying the new academic standing of the discipline, he also completed a PhD in architecture at the University of Manchester soon after. During Martin’s time at Hull, Marcel Breuer, László Moholy-Nagy, and Serge Chermayeff all lectured.7 This firsthand contact with key figures of European modernism—many of whom had immigrated to England during the mid-1930s—had a lasting influence on Martin’s work and on the pedagogical views he would implement at Cambridge after the war. He thus served as an important link between European and British—as well as pre- and postwar—architectural thought, particularly, as we will see, by carrying an interpretation of constructivism into the postwar period.
The character of Martin’s prewar intellectual world is conveyed by the publication Circle: International Survey of Constructive Art (fig. 1.1), an art and architecture compendium that he coedited with the artists Ben Nicholson and Naum Gabo. The volume included contributions from Breuer, Moholy-Nagy, Siegfried Giedion, Walter Gropius, Le Corbusier, Henry Moore, Piet Mondrian, Lewis Mumford, and Richard Neutra.8 Though intended as a serial, Circle appeared only once, in 1937, and few copies were sold before stocks of the journal were destroyed in the Blitz.9 Yet as a rare statement of modernist principles in Britain before World War II, Circle had an effect greater than its small circulation would suggest—an effect evidenced and reinforced by its appearance as a reprint in the 1970s.
FIGURE 1.1. Leslie Martin, Ben Nicholson, and Naum Gabo, eds., Circle: International Survey of Constructive Art (1937; 1971 repr. pictured). Courtesy of Faber and Faber Ltd.
Tellingly, Circle’s two introductory editorials both speak of science before they speak of art or architecture. Echoing what was by this time established modern movement ideology, these introductions claim that the sciences had made greater and more revolutionary advances than the arts and that the arts must follow a similar revolutionary course in order to remain intellectually and socially relevant. After the radical and cleansing upheaval of cubism, described as the artistic parallel to the new physics of relativity, what they call “the Constructive idea” emerges as a synthetic strategy for the positive creation of new works. Most significantly for the architecture program Martin would shape at Cambridge after the war, this “Constructive idea” rejected art’s historical dependence on “Content”—which Gabo describes as “the external images of Nature”—to focus exclusively on “Form.” Further, the introductions posit that the elements of “Form” in art—line, shape, color—have intrinsic qualities and effects, making possible a sort of science of artistic production.10
Martin’s own contribution to Circle is in part a similar summary of modernist rhetoric. In his view, architecture in the nineteenth century was severed from scientific advances and became mired in the groundless reworking of historical styles. Martin saw the division continuing into his present: “the general public does not as yet observe the incongruity between its motor cars and its tudor villas.”11 Modernism’s goal is to synchronize the spheres of human activity, which in the 1930s meant the proliferation of an architectural aesthetic appropriate to the machine age. This much was already established polemic. More unusual is the iconoclastic turn taken in Martin’s description of the epistemology that accompanies this new aesthetic.
It is a matter of common knowledge that in science, the world of “appearances” . . . has been abandoned. The world of appearances has given place to a world in which things unrelated to each other in appearance are united in the completeness of a single system. In science as in art, “appearance” has been jettisoned in favour of a world discovered only through the penetration of appearances.12
Extending this view to architecture, Martin argues that our understanding of buildings must unite internal and external conditions, static form and environmental performance, the individual building and its surrounding context. Here are two notions that would be fundamental to the postwar work under Martin’s direction at Cambridge: first, that there could be an ordering system for architecture that operated at a level deeper than aesthetics, and second, that this system would determine architectural production across all scales, or as the postwar vocabulary would have it, throughout the “built environment.”
Such theoretical tenets were extended in practice during the Second World War as Martin served as principle assistant architect to the London, Midland and Scottish Railway, where, anticipating his later interests at Cambridge, he established a research group to study the prefabrication of railway stations. In 1953 he was appointed Chief Architect of the London County Council, an influential post in which he was able to foster a wave of modernist building.13 It was also in the years just after the war that he designed his best known work, the Royal Festival Hall in London, completed in 1951.
Two years into his tenure at Cambridge, Martin chaired the 1958 RIBA Oxford Conference on Architectural Education. His statement for the conference can be taken as a manifesto for his leadership at Cambridge:
If architecture is to take its proper place in the university and if the knowledge which it entails is to be taught at the highest standard, it will be necessary to establish a bridge between faculties; between the arts and the sciences, the engineering sciences, sociology and economics. Furthermore, the universities will require something more than a study of techniques and parcels of this or that form of knowledge. They will expect and have a right to expect that knowledge will be guided and developed by principles: that is by theory. . . . Research is the tool by which theory is advanced. Without it, teaching can have no direction and thought no cutting edge.14
Faced with a continuing need to justify architecture’s presence in universities, Martin offered a threefold argument: first, architectural education would rely on other established fields for much of its content; second, it would establish a coherent body of theory as a means of self-definition; third, architects would conduct research that would advance not just technical aspects of the field but also its theoretical foundations. In the 1960s, this need for intellectual justification, Martin’s constructivist beliefs, and his planning experience during reconstruction were forcefully combined with the new technology of computing to encourage the rapid expansion of architectural research at Cambridge. It was also during Martin’s tenure that a group of figures who would become internationally influential came to the school of architecture, including new faculty members such as Colin St. John Wilson, Colin Rowe, and Peter Eisenman, as well as students drawn to the program such as Anthony Vidler, Christopher Alexander, and Lionel March.
These developments within the study and teaching of architecture were part of a greater shift in attitude at the university. In postwar Cambridge architects were not alone in adopting a scientific attitude. As a visiting scholar noted in 1961, “The university itself . . . should get a different name. Not the University of Cambridge, it really should be called Fenland Tech; and we should all go out and get T-shirts to advertise this message.”15 Recalling the influential work coming out of other Cambridge departments and directly echoing the tone of Circle, March remembered that “Models, quantitative techniques, structuralism seemed to be in the Fenland air. . . . [T]here opened up the prospect of disciplines merging together through the form of approach, despite the ever-increasing specialization of content.”16
In fact these developments of the 1960s and 1970s would soon outrun Martin’s own position, for while he pushed architecture at Cambridge toward the sciences, architecture did not, in his view, simply collapse into science. One of his colleagues, Dean Hawkes, has emphasized both sides of this attitude as well as the influence of the postwar context, recalling that Martin had
[a] determination to guarantee the status of architecture as a valid academic discipline. . . . [W]hen the principles of scientific rationalism were influential in many fields of critical study, it was, perhaps, inevitable that the model of theory and, hence, of research in architecture would look to the paradigms of science. . . . But, while this early research observed, and undoubtedly benefited from the discipline of the scientific model, Martin’s constant concern was to make connections between these studies and the broad themes of architecture, not to make architecture itself “scientific.”17
Somewhat contradictorily, then, the validity and autonomy of architecture as an intellectual discipline is in this view supported by and modeled on the sciences. As we consider the theories that emerged from Martin’s school, we will see that each is built on this assumption: that architecture is a domain that can be investigated in the way that science investigates nature and that analogous laws for architecture can be discovered.
Though understandable as a reaction both to architecture’s comparatively new place within the academy and to the generally scientistic context of the postwar years, the internal tensions, even instability, of Martin’s vision would be constantly evident over the subsequent decades of architectural research at Cambridge, reaching a critical point with the 2004 recommendation to close the department. By suggesting that architecture be closely connected to science, Martin provoked a cluster of nagging questions: If architecture was not in fact a science, then what, exactly, did it learn from the sciences? If there was only a parallelism between architecture and science, what did that mean? If the methods were the same, then architecture was a science, but if, presumably, the methods were not the same, then what was it that the two fields had in common? And what was it that belonged particularly to architecture?
These and similar questions would continue to haunt the Cambridge research. What is under debate here is a question of objectivity: whether within a university context architecture can deliver knowledge that is objective according to the terms of the sciences (here I bracket the many questions about those terms themselves). This can be restated as a question of motivation: Can architecture become “unmotivated” in the manner of science? For, although the processes of discovery in science and mathematics are certainly not unmotivated, the discoveries the...

Índice