Círculos matemáticos
  1. 353 páginas
  2. Spanish
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Descripción del libro

Con la idea de que pensar y discutir sobre problemas matemáticos podría generar el mismo entusiasmo que practicar un deporte en equipo, en la antigua Unión Soviética surgió el singular movimiento cultural de los CÍRCULOS MATEMÁTICOS, que dejó tras de sí un intenso rastro de problemas, enfoques y textos. CÍRCULOS MATEMÁTICOS recoge parte de aquella emocionante experiencia.Es un libro de divulgación matemática dirigido a todos aquellos que sienta curiosidad por el juego mental que implican las matemáticas y que deseen indagar en sus ramas menos conocidas. También es un libro ideal para estudiantes que quieran salir de los límites del curriculum escolar, y para profesores que deseen proponer retos matemáticos interesantes pero que no requieran técnicas complicadas para resolverse.

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Información

Año
2015
ISBN de la versión impresa
9788467552270
ISBN del libro electrónico
9788467589092
Categoría
Mathematics
Parte 2. El segundo año
Capítulo 9
Inducción
I. S. Rubanov
§ 1. Los procesos inductivos y el método de inducción
Introducción para los profesores. ¿Quién no ha jugado alguna vez a colocar fichas de dominó en una fila y hacer que caigan en cadena? Empujamos la primera ficha y esta derriba a la segunda, la segunda derriba entonces a la tercera y así sucesivamente hasta que caen todas. Sustituyamos ahora las fichas de dominó por una serie infinita de proposiciones (P1, P2, P3, …) numeradas con los enteros positivos.
Supongamos que podemos demostrar que:
(B): la primera proposición de la serie es verdadera.
(S): La veracidad de cada proposición de la serie implica la veracidad de la siguiente.
Entonces habríamos demostrado, de hecho, todas las proposiciones de la serie. En efecto, si “empujamos la primera ficha de dominó”, es decir, probamos la primera afirmación (B), entonces el enunciado (S) significará que cada “ficha” (proposición), al caer (ser demostrada), derribará a (implica la veracidad de) la siguiente. Cualquier proposición que elijamos de antemano será probada eventualmente al ser alcanzada por esta onda de demostraciones.
Acabamos de hacer una descripción del método de inducción matemática. La afirmación (B) es la “base de inducción” y la (S) es el “paso de inducción”. Nuestro razonamiento con la sucesión de fichas de dominó cayendo demuestra que el paso (S) no es más que una forma compacta de representar la cadena de teoremas que mostramos abajo:
P1 P2 P3 Pk Pk + 1
Llamaremos a los teoremas de esta sucesión “pasos”, y al proceso que consiste en demostrarlos secuencialmente, “el proceso de inducción”. Podemos representar este proceso visualmente como una sucesión de demostraciones que van avanzando de cada proposición a la siguiente a lo largo de una cadena de teoremas.
La esencia del método de inducción consiste precisamente en este proceso. Podemos preguntarnos entonces cómo podemos transmitir esta idea a los alumnos. Intentaremos mostrarlo simulando un diálogo entre un profesor (P) y un estudiante (E), que bien podría representar una sesión de uno de nuestros círculos matemáticos. Al final del diálogo propondremos algunos comentarios metodológicos para el profesor (las referencias numeradas a esos comentarios aparecen indicadas entre paréntesis en el propio texto del diálogo).
Problema 1. P: Recortamos un cuadrado de 16 × 16 de una hoja de papel cuadriculado y le quitamos una casilla cualquiera. Demuestra que la figura así obtenida puede ser recubierta sin solapamientos por triminós como el que se muestra en la figu...

Índice

  1. Portadilla
  2. Prefacio
  3. Prólogo a la Edición Rusa
  4. Parte I. El primer año
  5. Parte 2. El segundo año
  6. Apéndice A Concursos de matemáticas
  7. Apéndice B Respuestas y soluciones
  8. Apéndice C Bibliografía
  9. Créditos

Preguntas frecuentes

Sí, puedes cancelar tu suscripción en cualquier momento desde la pestaña Suscripción en los ajustes de tu cuenta en el sitio web de Perlego. La suscripción seguirá activa hasta que finalice el periodo de facturación actual. Descubre cómo cancelar tu suscripción
No, los libros no se pueden descargar como archivos externos, como los PDF, para usarlos fuera de Perlego. Sin embargo, puedes descargarlos en la aplicación de Perlego para leerlos sin conexión en el móvil o en una tableta. Descubre cómo descargar libros para leer sin conexión
Perlego ofrece dos planes: Essential y Complete
  • El plan Essential es ideal para los estudiantes y los profesionales a los que les gusta explorar una amplia gama de temas. Accede a la biblioteca Essential, con más de 800 000 títulos de confianza y superventas sobre negocios, crecimiento personal y humanidades. Incluye un tiempo de lectura ilimitado y la voz estándar de «Lectura en voz alta».
  • Complete: perfecto para los estudiantes avanzados y los investigadores que necesitan un acceso completo sin ningún tipo de restricciones. Accede a más de 1,4 millones de libros sobre cientos de temas, incluidos títulos académicos y especializados. El plan Complete también incluye funciones avanzadas como la lectura en voz alta prémium y el asistente de investigación.
Ambos planes están disponibles con un ciclo de facturación mensual, semestral o anual.
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 990 categorías, ¡tenemos todo lo que necesitas! Descubre nuestra misión
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información sobre la lectura en voz alta
¡Sí! Puedes usar la aplicación de Perlego en dispositivos iOS y Android para leer cuando y donde quieras, incluso sin conexión. Es ideal para cuando vas de un lado a otro o quieres acceder al contenido sobre la marcha.
Ten en cuenta que no será compatible con los dispositivos que se ejecuten en iOS 13 y Android 7 o en versiones anteriores. Obtén más información sobre cómo usar la aplicación
Sí, puedes acceder a Círculos matemáticos de Dmitry Fomin,Sergey Genkin,Ilia Itenberg, Enrique Hernando Arnáiz en formato PDF o ePUB, así como a otros libros populares de Mathematics y Mathematics General. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.