The Rayleigh-Ritz Method for Structural Analysis
eBook - ePub

The Rayleigh-Ritz Method for Structural Analysis

Sinniah Ilanko, Luis Monterrubio, Yusuke Mochida

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

The Rayleigh-Ritz Method for Structural Analysis

Sinniah Ilanko, Luis Monterrubio, Yusuke Mochida

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

A presentation of the theory behind the Rayleigh-Ritz (R-R) method, as well as a discussion of the choice of admissible functions and the use of penalty methods, including recent developments such as using negative inertia and bi-penalty terms. While presenting the mathematical basis of the R-R method, the authors also give simple explanations and analogies to make it easier to understand. Examples include calculation of natural frequencies and critical loads of structures and structural components, such as beams, plates, shells and solids. MATLAB codes for some common problems are also supplied.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que The Rayleigh-Ritz Method for Structural Analysis est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  The Rayleigh-Ritz Method for Structural Analysis par Sinniah Ilanko, Luis Monterrubio, Yusuke Mochida en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Sciences physiques et MĂ©canique. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley-ISTE
Année
2014
ISBN
9781118984420
Édition
1
Sous-sujet
MĂ©canique

1

Principle of Conservation of Energy and Rayleigh’s Principle

The well-known principle of conservation of energy forms the basis of some common convenient analytical techniques in Mechanics. According to this principle, the total energy of a closed system remains unchanged. This means that in the absence of any losses due to friction etc., the sum of the total potential energy and the kinetic energy of a vibratory system will be a constant. Although in practice there will always be some damping, and hence dissipation of energy, for many mechanical systems such losses may be neglected. Such systems are called conservative systems.
The natural frequencies of conservative systems may be obtained by equating the maximum kinetic energy (Tm) to the maximum total potential energy (Vm) associated with vibration. The meaning of these energy terms is very important. To illustrate the principle of conservation of energy, and the meaning of the energy terms let us study some simple vibratory systems.

1.1. A simple pendulum

Consider the oscillatory motion of the simple pendulum consisting of a bob of mass m and a massless string of length L as shown in Figure 1.1. It would be at rest in a vertical configuration under gravity field. If it is given a small disturbance ÎČm and then released, it will tend to vibrate about this equilibrium state. The restoring action of the gravity force will initiate a motion toward the equilibrium state but as the bob approaches the lowest point in its motion it has a velocity and therefore carries on swinging up on the other side until the gravity force causes it to come to a halt momentarily. In the absence of any damping forces, this motion would go on forever, but in reality the damping forces will help to put an end to this vibration after some time.
Figure 1.1. Simple pendulum
images
Assuming that energy loss associated with mechanical friction and aerodynamic resistance is negligible, we have two types of energy term to consider. These are the kinetic energy (denoted by T1, T2) where the subscripts 1 and 2 refer to states 1 and 2 respectively, and the potential energy (denoted by V1, V2). The kinetic energy is proportional to the square of the velocity and the potential energy is dependent on the vertical position of the bob.
The pendulum will have the maximum kinetic energy as the bob passes through the equilibrium state (state 1) at which time it will have the lowest potential energy. At the time of maximum excursion (state 2), the bob will be at its highest point, and therefore the system will have the maximum potential energy, but since it has no velocity its kinetic energy will be minimum. The potential energy can be defined arbitrarily by selecting a datum. In our example, the increase in the potential energy as the system changes from state 1 to state 2 is entirely associated with the vibration, and will be referred to as the maximum potential energy hereafter. As the bob returns to state 1 from state 2, it loses potential energy and gains kinetic energy. The maximum kinetic energy associated with vibration is the kinetic energy at state 1 minus the kinetic energy at state 2. (The latter is not necessarily absolutely zero, as the support point may have a velocity. In rotating systems care must be taken to ensure that the kinetic energy terms are calculated correctly.) Since the total energy is conserved, the maximum kinetic energy associated with vibration must be equal to the maximum total potential energy associated with vibration. The inclusion of the phrase “associated with vibration” is used here since terms such as “maximum” and “total” can otherwise cause confusion.
From the principle of conservation of energy:
image
The gain in potential energy as the bob moves from state 1 to state 2 is the maximum potential energy associated with vibration and may be denoted by Vm.
V2–V1 = Vm
Similarly the maximum kinetic energy associated with vibration is:
[1.1] T1–T2 = Tm
From the above equations we have Vm = Tm
In applying the principle of conservation of energy for vibratory systems, it is sufficient to equate the maximum potential and kinetic energy terms associated with vibration.
To find the circu...

Table des matiĂšres