Nanoelectronic Devices
eBook - ePub

Nanoelectronic Devices

Byung-Gook Park, Sung Woo Hwang, Young June Park

  1. 400 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Nanoelectronic Devices

Byung-Gook Park, Sung Woo Hwang, Young June Park

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This book provides readers with the knowledge in fundamentals of nanoelectronic devices. The authors build the principles of nanoelectronic devices based on those of microelectronic devices wherever possible and introduce the inherently nanoelectronic principles gradually. They briefly review quantum mechanics and solid-state physics that can form

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Nanoelectronic Devices est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Nanoelectronic Devices par Byung-Gook Park, Sung Woo Hwang, Young June Park en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Scienze fisiche et Fisica. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2012
ISBN
9781439896570
Édition
1
Sous-sujet
Fisica

Chapter 1

Quantum Mechanics for Nanoelectronic Devices

1.1 Fundamental Concepts of Quantum Mechanics

1.1.1 Wave Nature of Particles

In the late 19th century, scientists started to notice that there were phenomena that could not be explained by the classical theory of mechanics. One of them was the spectrum of absorption and emission by atoms. According to classical mechanics, the spectrum should be continuous, i.e., the emitted or absorbed light could have any frequency (wavelength). The experimental results, however, were surprising. The atoms emitted and absorbed light with discrete values of frequency only.
Let us examine the situation in more detail. Figure 1.1(a) shows an experimental setup to measure the emission spectrum of a hydrogen discharge lamp. If we pump out the air in a vacuum tube and fill it with a small amount of hydrogen (H2) gas, an arc discharge can be initiated by supplying sufficient bias voltage to the electrodes in the tube. The electrons in the hydrogen atoms absorb energy from the arc discharge and emit light with various frequencies. One startling feature of this process is that the emitted light has certain discrete frequencies only, as shown in Fig. 1.1(b).
Figure 1.1. Spectrum of hydrogen discharge lamp: (a) experimental setup, (b) emission spectrum.
Many people studied this phenomenon and some came up with the following formula for the observed frequencies.
where n1 and n2 are integers (n1 < n2). Depending on the value of n1, the discrete frequencies form distinctive groups, called Lyman (n1 = 1), Balmer (n1 = 2), and Paschen (n1 = 3) series after their early investigators.
This phenomenon, however, cannot be understood at all in terms of classical mechanics. Maxwell’s theory of electromagnetic radiation predicts that there should be an emission of radiation since the electron is accelerated toward the positively charged nucleus. The electron loses its energy due to the emission of radiation and forms a continuously shrinking orbit. The continuous motion of the electron should generate a continuous emission spectrum as shown in Fig. 1.2(a). There is no way of explaining the discrete spectrum in the frame of classical mechanics. Furthermore, the electron should eventually settle down on the surface of nucleus (Fig. 1.2(b)). This conclusion again contradicts Rutherford’s well-known experiment that showed that there is a vast space between the electron and the nucleus.
Figure 1.2. Classical explanation of the emission spectrum of atoms: (a) emission intensity as a function of frequency, (b) mechanism of photo emission. Since the electron is accelerated toward the positively charged nucleus, it emits electromagnetic radiation and loses energy. The radius of electron orbit should shrink rapidly and the electron will eventually come in contact with the nucleus.
In order to explain the emission spectrum of atoms, Niels Bohr proposed a model for the hydrogen atom, based on the motion of the planetary system. His main hypothesis concerning the electron motion in an atom was the existence of quantized stable orbits. The condition for a stable orbit is that the phase integral of the electron angular momentum, ÎĄÏ†, should be an integer multiple of Planck’s constant, h.
In the case of a circular orbit with radius r, mass me, and velocity v, we can easily evaluate the phase integral, using the definition of angular momentum
.
For a circular motion, the Coulomb attraction between the electron and the nucleus should be balanced by the centrifugal force of the electron:
where e is the charge of an electron and Δ0 is the permittivity of vacuum. Combining Eqs. (1.3) and (1.4), we can obtain the velocity of the electron.
Thus, the velocity of the electron in a stable orbit is quantized and the corresponding energy is also quantized as
By the time Bohr proposed his model, it was well established that light is emitted as an energy quantum (E = hf) called the photon, and he postulated that a photon is emitted when an electron jumps from one stable orbit (with higher energy En2) to another (with lower energy En1).
Now this equation is the same as Eq. (1.1) and the atomic spectrum is explained finally.
There was one major deficiency in Bohr’s theory, however, since he could not provide any reason why the angular momentum should be quantized....

Table des matiĂšres

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Contents
  5. Preface
  6. 1 Quantum Mechanics for Nanoelectronic Devices
  7. 2 Electron Transport and Device Physics
  8. 3 MOS Structure and CMOS Devices
  9. 4 Quantum Well Devices
  10. 5 Quantum Wire Devices
  11. 6 Quantum Dot Devices
  12. 7 MOSFET as a Molecular Sensor
  13. Appendix I Physical Constants
  14. Appendix II Dirac Delta Function
  15. Appendix III Gamma Function
  16. Appendix IV Effective Mass Matrix
  17. Appendix V Density-Of-States (DOS) and Conductivity Effective Masses
  18. Index
  19. Color Insert
Normes de citation pour Nanoelectronic Devices

APA 6 Citation

Park, B.-G., Hwang, S. W., & Park, Y. J. (2012). Nanoelectronic Devices (1st ed.). Jenny Stanford Publishing. Retrieved from https://www.perlego.com/book/1604774/nanoelectronic-devices-pdf (Original work published 2012)

Chicago Citation

Park, Byung-Gook, Sung Woo Hwang, and Young June Park. (2012) 2012. Nanoelectronic Devices. 1st ed. Jenny Stanford Publishing. https://www.perlego.com/book/1604774/nanoelectronic-devices-pdf.

Harvard Citation

Park, B.-G., Hwang, S. W. and Park, Y. J. (2012) Nanoelectronic Devices. 1st edn. Jenny Stanford Publishing. Available at: https://www.perlego.com/book/1604774/nanoelectronic-devices-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Park, Byung-Gook, Sung Woo Hwang, and Young June Park. Nanoelectronic Devices. 1st ed. Jenny Stanford Publishing, 2012. Web. 14 Oct. 2022.