Lens Design Fundamentals
eBook - ePub

Lens Design Fundamentals

Rudolf Kingslake,R. Barry Johnson

  1. 569 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Lens Design Fundamentals

Rudolf Kingslake,R. Barry Johnson

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

  • Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978
  • Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer
  • Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field

Rudolf Kingslake is regarded as the American father of lens design; his book, not revised since its publication in 1978, is viewed as a classic in the field. Naturally, the area has developed considerably since the book was published, the most obvious changes being the availability of powerful lens design software packages, theoretical advances, and new surface fabrication technologies.

This book provides the skills and knowledge to move into the exciting world of contemporary lens design and develop practical lenses needed for the great variety of 21 st -century applications. Continuing to focus on fundamental methods and procedures of lens design, this revision by R. Barry Johnson of a classic modernizes symbology and nomenclature, improves conceptual clarity, broadens the study of aberrations, enhances discussion of multi-mirror systems, adds tilted and decentered systems with eccentric pupils, explores use of aberrations in the optimization process, enlarges field flattener concepts, expands discussion of image analysis, includes many new exemplary examples to illustrate concepts, and much more.

Optical engineers working in lens design will find this book an invaluable guide to lens design in traditional and emerging areas of application; it is also suited to advanced undergraduate or graduate course in lens design principles and as a self-learning tutorial and reference for the practitioner.

Rudolf Kingslake (1903-2003) was a founding faculty member of the Institute of Optics at The University of Rochester (1929) and remained teaching until 1983. Concurrently, in 1937 he became head of the lens design department at Eastman Kodak until his retirement in 1969. Dr. Kingslake published numerous papers, books, and was awarded many patents. He was a Fellow of SPIE and OSA, and an OSA President (1947-48). He was awarded the Progress Medal from SMPTE (1978), the Frederic Ives Medal (1973), and the Gold Medal of SPIE (1980).

R. Barry Johnson has been involved for over 40 years in lens design, optical systems design, and electro-optical systems engineering. He has been a faculty member at three academic institutions engaged in optics education and research, co-founder of the Center for Applied Optics at the University of Alabama in Huntsville, employed by a number of companies, and provided consulting services. Dr. Johnson is an SPIE Fellow and Life Member, OSA Fellow, and an SPIE President (1987). He published numerous papers and has been awarded many patents. Dr. Johnson was founder and Chairman of the SPIE Lens Design Working Group (1988-2002), is an active Program Committee member of the International Optical Design Conference, and perennial co-chair of the annual SPIE Current Developments in Lens Design and Optical Engineering Conference.

  • Thoroughly revised and expanded to reflect the substantial changes in the field since its publication in 1978
  • Strong emphasis on how to effectively use software design packages, indispensable to today's lens designer
  • Many new lens design problems and examples – ranging from simple lenses to complex zoom lenses and mirror systems – give insight for both the newcomer and specialist in the field

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Lens Design Fundamentals est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Lens Design Fundamentals par Rudolf Kingslake,R. Barry Johnson en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Civil Engineering. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Academic Press
Année
2009
ISBN
9780080921563
Chapter 1

The Work of the Lens Designer

Before a lens can be constructed it must be designed, that is to say, the radii of curvature of the surfaces, the thicknesses, the air spaces, the diameters of the various components, and the types of glass to be used must all be determined and specified.1,2 The reason for the complexity in lenses is that in the ideal case all the rays in all wavelengths originating at a given object point should be made to pass accurately through the image of that object point, and the image of a plane object should be a plane, without any appearance of distortion (curvature) in the images of straight lines.
Scientists always try to break down a complex situation into its constituent parts, and lenses are no exception. For several hundred years various so-called aberrations have been recognized in the imperfect image formed by a lens, each of which can be varied by changing the lens structure. Typical aberrations are spherical aberration, comatic, astigmatic, and chromatic, but in any given lens all the aberrations appear mixed together, and correcting (or eliminating) one aberration will improve the resulting image only to the extent of the amount of that particular aberration in the overall mixture. Some aberrations can be easily varied by merely changing the shape of one or more of the lens elements, while others require a drastic alteration of the entire system.
The lens parameters available to the designer for change are known as “degrees of freedom.” They include the radii of curvature of the surfaces, the thicknesses and airspaces, the refractive indices and dispersive powers of the glasses used for the separate lens elements, and the position of the “stop” or aperture-limiting diaphragm or lens mount. However, it is also necessary to maintain the required focal length of the lens at all times, for otherwise the relative aperture and image height would vary and the designer might end up with a good lens but not the one he set out to design. Hence each structural change that we make must be accompanied by some other change to hold the focal length constant. Also, if the lens is to be used at a fixed magnification, that magnification must be maintained throughout the design.
The word “lens” is ambiguous, since it may refer to a single element or to a complete objective such as that supplied with a camera. The term “system” is often used for an assembly of units such as lenses, mirrors, prisms, polarizers, and detectors. The name “element” always refers to a single piece of glass having polished surfaces, and a complete lens thus contains one or more elements. Sometimes a group of elements, cemented or closely airspaced, is referred to as a “component” of a lens. However, these usages are not standardized and the reader must judge what is meant when these terms appear in a book or article.

1.1 RELATIONS BETWEEN DESIGNER AND FACTORY

The lens designer must establish good relations with the factory because, after all, the lenses that he designs must eventually be made. He should be familiar with the various manufacturing processes and work closely with the optical engineers. He must always bear in mind that lens elements cost money, and he should therefore use as few of them as possible if cost is a serious factor. Sometimes, of course, image quality is the most important consideration, in which case no limit is placed on the complexity or size of a lens. Far more often the designer is urged to economize by using fewer elements, flatter lens surfaces so that more lenses can be polished on a single block, lower-priced types of glass, and thicker lens elements since they are easier to hold by the rim in the various manufacturing operations.

1.1.1 Spherical versus Aspheric Surfaces

In ...

Table des matiĂšres

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright page
  5. Dedication
  6. Preface to the Second Edition
  7. Preface to the First Edition
  8. A Special Tribute to Rudolf Kingslake
  9. Chapter 1: The Work of the Lens Designer
  10. Chapter 2: Meridional Ray Tracing
  11. Chapter 3: Paraxial Rays and First-Order Optics
  12. Chapter 4: Aberration Theory
  13. Chapter 5: Chromatic Aberration
  14. Chapter 6: Spherical Aberration
  15. Chapter 7: Design of a Spherically Corrected Achromat
  16. Chapter 8: Oblique Beams
  17. Chapter 9: Coma and the Sine Condition
  18. Chapter 10: Design of Aplanatic Objectives
  19. Chapter 11: The Oblique Aberrations
  20. Chapter 12: Lenses in Which Stop Position Is a Degree of Freedom
  21. Chapter 13: Symmetrical Double Anastigmats with Fixed Stop
  22. Chapter 14: Unsymmetrical Photographic Objectives
  23. Chapter 15: Mirror and Catadioptric Systems
  24. Chapter 16: Eyepiece Design
  25. Chapter 17: Automatic Lens Improvement Programs
  26. Appendix: A Selected Bibliography of Writings by Rudolf Kingslake
  27. Index
Normes de citation pour Lens Design Fundamentals

APA 6 Citation

Kingslake, R., & Johnson, B. (2009). Lens Design Fundamentals (2nd ed.). Elsevier Science. Retrieved from https://www.perlego.com/book/1809721/lens-design-fundamentals-pdf (Original work published 2009)

Chicago Citation

Kingslake, Rudolf, and Barry Johnson. (2009) 2009. Lens Design Fundamentals. 2nd ed. Elsevier Science. https://www.perlego.com/book/1809721/lens-design-fundamentals-pdf.

Harvard Citation

Kingslake, R. and Johnson, B. (2009) Lens Design Fundamentals. 2nd edn. Elsevier Science. Available at: https://www.perlego.com/book/1809721/lens-design-fundamentals-pdf (Accessed: 15 October 2022).

MLA 7 Citation

Kingslake, Rudolf, and Barry Johnson. Lens Design Fundamentals. 2nd ed. Elsevier Science, 2009. Web. 15 Oct. 2022.