The Usefulness of Useless Knowledge
eBook - ePub

The Usefulness of Useless Knowledge

Abraham Flexner

  1. 104 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

The Usefulness of Useless Knowledge

Abraham Flexner

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

A short, provocative book about why "useless" science often leads to humanity's greatest technological breakthroughs A forty-year tightening of funding for scientific research has meant that resources are increasingly directed toward applied or practical outcomes, with the intent of creating products of immediate value. In such a scenario, it makes sense to focus on the most identifiable and urgent problems, right? Actually, it doesn't. In his classic essay "The Usefulness of Useless Knowledge, " Abraham Flexner, the founding director of the Institute for Advanced Study in Princeton and the man who helped bring Albert Einstein to the United States, describes a great paradox of scientific research. The search for answers to deep questions, motivated solely by curiosity and without concern for applications, often leads not only to the greatest scientific discoveries but also to the most revolutionary technological breakthroughs. In short, no quantum mechanics, no computer chips.This brief book includes Flexner's timeless 1939 essay alongside a new companion essay by Robbert Dijkgraaf, the Institute's current director, in which he shows that Flexner's defense of the value of "the unobstructed pursuit of useless knowledge" may be even more relevant today than it was in the early twentieth century. Dijkgraaf describes how basic research has led to major transformations in the past century and explains why it is an essential precondition of innovation and the first step in social and cultural change. He makes the case that society can achieve deeper understanding and practical progress today and tomorrow only by truly valuing and substantially funding the curiosity-driven "pursuit of useless knowledge" in both the sciences and the humanities.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que The Usefulness of Useless Knowledge est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  The Usefulness of Useless Knowledge par Abraham Flexner en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Philosophy et Philosophy & Ethics in Science. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2017
ISBN
9781400884629
The World of Tomorrow
ROBBERT DIJKGRAAF
On April 30, 1939, under the gathering storm clouds of war, the New York World’s Fair opened in Flushing Meadows, in Queens. Its theme was The World of Tomorrow. Over the next eighteen months, nearly forty-five million visitors would be given a peek into a future shaped by newly emerging technologies. Some of the displayed innovations were truly visionary. The fair featured the first automatic dishwasher, air conditioner, and fax machine. The live broadcast of President Franklin Roosevelt’s opening speech introduced America to television. Newsreels showed Elektro the Moto-Man, a seven-foot tall, awkwardly moving aluminum robot that could speak by playing 78-rpm records, smoke a cigarette, and play with his robot dog Sparko. Other attractions, such as a pageant featuring magnificent steam-powered locomotives, could be better characterized as the last gasps of the world of yesterday.
Albert Einstein, honorary chair of the fair’s science advisory committee, presided over the official illumination ceremony, also broadcast live on television. He spoke to a huge crowd on the topic of cosmic rays, highly energetic subatomic particles bombarding the Earth from outer space. The event has been described as a comedy of errors. Einstein’s talk could hardly be understood as the amplification system soon broke down. And the opening act—the capture of ten cosmic rays—ended with a spectacular debacle. The particles were transported by telephone line from the Hayden Planetarium in Manhattan to the fairgrounds in Queens, where bells and lights signaled their arrival. But when the tenth ray was captured, a power failure occurred to the great disappointment of the audience, which soon decamped. As the New York Times reported the next day, “The crowd dropped science in favor of a spectacle that they could applaud.”
Two scientific discoveries that would soon dominate the world were absent at the World’s Fair: nuclear energy and electronic computers. Remarkably, the very beginnings of both technologies could be found at an institution that had been Einstein’s academic home since 1933: the Institute for Advanced Study in Princeton, New Jersey. The Institute was the brainchild of its first director, Abraham Flexner. Intended to be a “paradise for scholars” with no students or administrative duties, it allowed its academic stars to fully concentrate on deep thoughts, as far removed as possible from everyday matters and practical applications. It was the embodiment of Flexner’s vision of the “unobstructed pursuit of useless knowledge,” which would only show its use over many decades, if at all.
However, the unforeseen usefulness came much faster than expected. By setting up his academic paradise, Flexner unintentionally enabled the nuclear and digital revolutions. Among his first appointments was Einstein, who would follow his speech at the World’s Fair with his famous letter to President Roosevelt in August 1939, urging him to start the atomic bomb project. The breakthrough paper by Niels Bohr and John Wheeler on the mechanism of nuclear fission appeared in the Physical Review on September 1, 1939, the same day World War II started.
Another early Flexner appointee was the Hungarian mathematician John von Neumann, perhaps an even greater genius than Einstein, of almost extraterrestrial brilliance. Von Neumann was one of the “Martians,” an influential group of Hungarian scientists and mathematicians that also included Edward Teller, Eugene Wigner, and Leo Szilard, the physicist who helped draft Einstein’s letter to Roosevelt. A well-told story in physics is that when a frustrated Enrico Fermi asked where were the highly exceptional and talented aliens that were meant to find Earth, an impish Szilard replied, “They are among us, but they call themselves Hungarians.”
Von Neumann’s early reputation was based on his work in pure mathematics and the foundations of quantum theory. Together with the American logician Alonzo Church, he made Princeton a center for mathematical logic in the 1930s, attracting such luminaries as Kurt Gödel and Alan Turing. Von Neumann was fascinated by Turing’s abstract idea of a universal calculating machine that could mechanically prove mathematical theorems. When the nuclear bomb program required large-scale numeric modeling, von Neumann gathered a group of engineers at the Institute to begin designing, building, and programming an electronic digital computer—the physical realization of Turing’s universal machine. As von Neumann observed in 1946, “I am thinking about something much more important than bombs. I am thinking about computers.”
In his spare time, von Neumann directed his team to focus these new computational powers on many other problems aside from weapons. With meteorologist Jule Charney, he made the first numerical weather prediction in 1949—technically it was a “postdiction,” since at that time it took forty-eight hours to predict tomorrow’s weather. Anticipating our present climate-change reality, von Neumann would write about the study of the Earth’s weather and climate: “All this will merge each nation’s affairs with those of every other, more thoroughly than the threat of a nuclear or any other war may already have done.”
A logical machine that can prove mathematical theorems or a highly technical paper on the structure of the atomic nucleus may seem to be useless endeavors. In fact, they played important roles in developing technologies that have revolutionized our way of life beyond recognition. These curiosity-driven inquiries into the foundations of matter and calculation led to the development of nuclear arms and digital computers, which in turn permanently upset the world order, both militarily and economically. Rather than attempting to demarcate the nebulous and artificial distinction between “useful” and “useless” knowledge, we may follow the example of the British chemist and Nobel laureate George Porter, who spoke instead of applied and “not-yet-applied” research.
Supporting applied and not-yet-applied research is not just smart, but a social imperative. In order to enable and encourage the full cycle of scientific innovation, which feeds into society in numerous important ways, it is more productive to think of developing a solid portfolio of research in much the same way as we approach well-managed financial resources. Such a balanced portfolio would contain predictable and stable short-term investments, as well as long-term bets that are intrinsically more risky but can potentially earn off-the-scale rewards. A healthy and balanced ecosystem would support the full spectrum of scholarship, nourishing a complex web of interdependencies and feedback loops.
However, our current research climate, governed by imperfect “metrics” and policies, obstructs this prudent approach. Driven by an ever-deepening lack of funding, against a background of economic uncertainty, global political turmoil, and ever-shortening time cycles, research criteria are becoming dangerously skewed toward conservative short-term goals that may address more immediate problems but miss out on the huge advances that human imagination can bring in the long term. Just as in Flexner’s time, the progress of our modern age, and of the world of tomorrow, depends not only on technical expertise, but also on unobstructed curiosity and the benefits—and pleasures—of traveling far upstream, against the current of practical considerations.
Image
Who was Abraham Flexner, and how did he arrive at his firm beliefs in the power of unfettered scholarship? Born in 1866 in Louisville, Kentucky, Flexner was one of nine children of Jewish immigrants from Bohemia. In spite of sudden economic hardship—the Flexners lost their business in the panic of 1873—and with the help of his older brother Jacob, Abraham was able to attend Johns Hopkins University, arguably the first modern research university in the United States. Flexner’s exposure to the advanced opportunities at Johns Hopkins, which were comparable to those at leading foreign universities,...

Table des matiĂšres

  1. Cover Page
  2. Title Page
  3. Copyright Page
  4. Contents
  5. The World of Tomorrow
  6. The Usefulness of Useless Knowledge
  7. About the Authors
  8. Further Reading
Normes de citation pour The Usefulness of Useless Knowledge

APA 6 Citation

Flexner, A. (2017). The Usefulness of Useless Knowledge ([edition unavailable]). Princeton University Press. Retrieved from https://www.perlego.com/book/739687/the-usefulness-of-useless-knowledge-pdf (Original work published 2017)

Chicago Citation

Flexner, Abraham. (2017) 2017. The Usefulness of Useless Knowledge. [Edition unavailable]. Princeton University Press. https://www.perlego.com/book/739687/the-usefulness-of-useless-knowledge-pdf.

Harvard Citation

Flexner, A. (2017) The Usefulness of Useless Knowledge. [edition unavailable]. Princeton University Press. Available at: https://www.perlego.com/book/739687/the-usefulness-of-useless-knowledge-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Flexner, Abraham. The Usefulness of Useless Knowledge. [edition unavailable]. Princeton University Press, 2017. Web. 14 Oct. 2022.