PT Symmetry
eBook - ePub

PT Symmetry

In Quantum and Classical Physics

Carl M Bender

Partager le livre
  1. 468 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

PT Symmetry

In Quantum and Classical Physics

Carl M Bender

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Originated by the author in 1998, the field of PT (parity-time) symmetry has become an extremely active and exciting area of research. PT-symmetric quantum and classical systems have theoretical, experimental, and commercial applications, and have been the subject of many journal articles, PhD theses, conferences, and symposia. Carl Bender's work has influenced major advances in physics and generations of students.

This book is an accessible entry point to PT symmetry, ideal for students and scientists looking to begin their own research projects in this field.

Contents:

  • Preface
  • About the Authors
  • Acknowledgments
  • Introduction to PT Symmetry:
    • Basics of PT Symmetry
    • PT -Symmetric Eigenvalue Problems
    • PT -Symmetric Quantum Mechanics
    • PT -Symmetric Classical Mechanics
    • PT -Symmetric Quantum Field Theory
  • Advanced Topics in PT Symmetry:
    • Proof of Reality for Some Simple Examples
    • Exactly Solvable PT -Symmetric Models
    • Kreĭn-Space Theory and PTQM
    • PT -Symmetric Deformations of Nonlinear Integrable Systems
    • PT Symmetry in Optics


Readership: Advanced graduate students and researchers, scientists, mathematicians, and engineers in many fields.PT Symmetry;Non-Hermitian Hamiltonian;Exceptional Points00

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que PT Symmetry est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  PT Symmetry par Carl M Bender en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Naturwissenschaften et Quantentheorie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
WSPC (EUROPE)
Année
2018
ISBN
9781786345974

Part I

Introduction to PT Symmetry

By Carl M. Bender with Daniel W. Hook
“Numbers have a way of taking a man by the
hand and leading him down the path of reason.”
—PyThagoras

Chapter 1

Basics of PT Symmetry

“We consider it a good principle to explain the
phenomena by the simplest hypothesis possible.”
–PT olemy
This chapter introduces the basic ideas of PT-symmetric systems. It begins with a brief discussion of closed (isolated) and open (non-isolated) systems and explains that PT-symmetric systems are physical configurations that may be viewed as intermediate between open and closed systems. The chapter then presents elementary examples of quantum-mechanical and classical PT-symmetric systems. It demonstrates that the Hamiltonians that describe PT-symmetric systems are complex extensions (deformations) of conventional real Hamiltonians. Finally, this chapter shows that real systems that are unstable may become stable in the more general complex setting. Thus, by deforming real systems into the complex domain one may be able to tame or even eliminate instabilities.

1.1Open, Closed, and PT-Symmetric Systems

The equations that govern the time evolution of a physical system, whether it is classical or quantum mechanical, can be derived from the Hamiltonian for the physical system. However, to obtain a complete physical description of a system, one must also impose appropriate boundary conditions. Depending on the choice of boundary conditions, physical systems are normally classified as being closed or open; that is, isolated or non-isolated.
A closed, or isolated, system is one that is not in contact with its environment. In conventional quantum mechanics such a system evolves according to a Hermitian Hamiltonian. We use the term Hermitian Hamiltonian to mean that if the Hamiltonian H is in matrix form, then H remains invariant under the combined operations of matrix transposition and complex conjugation. We use the symbol † to represent these combined operations and to indicate that a Hamiltonian is Hermitian we write H = H†. The eigenvalues of a Hermitian Hamiltonian are always real. Moreover, a Hermitian Hamiltonian conserves probability (the norm of a state). When the probability is constant in time, the time evolution is said to be unitary.
A closed system may be thought of as idealized because its time evolution is not influenced by the external environment. One cannot observe a closed system in a laboratory because making a measurement requires that the system be in contact with the external world. Physically realistic systems, such as scattering experiments, are open systems. An open system is subject to external physical influences because energy and/or probability from the outside world flows into and/or out of such a system.
To examine the differences between open and closed systems, we consider a generic nonrelativistic quantum-mechanical Hamiltonian
image
which describes a particle of mass m subject to a potential V(x) in some region R of space. The function V(x) is assumed to be real. The time-dependent Schrödinger equation associated with this Hamiltonian is
image
where we work in units for which ħ = 1 and m = 1. If we multiply (1.1) by ψ*, multiply the complex conjugate of (1.1) by ψ, and subtract the two equations, we obtain the usual quantum-mechanical statement of local conservation of probability:
image
Here, ρ = ψ*ψ is the probability density and J =
image
(ψ∇ψ* – ψ*∇ψ) is the probability current. Integrating (1.2) over the region R and applying the divergence theorem, 1 we obtain the equation
image
where P =
image
dx ρ is the total probability inside the region R and the surface integral F =
image
ds n ⋅ J represents the net flux of probability passing through the surface S of the region R. (The symbol n represents a unit vector normal to S.) From (1.3) we can see that if the system is isolated (there is no flow of probability current across any point on the surface of R), then F = 0, so the total probability P is conserved (constant in time). However, if the system is open [there is a flow of probability through the surface of R so that F ≠ 0 (see Fig. 1.1)], then the total probability inside R is not constant. Such a system cannot be in equilibrium.
image
Fig. 1.1 A system with a net flow of probability into i...

Table des matiĂšres