Bioenergy
eBook - ePub

Bioenergy

Principles and Applications

Yebo Li, Samir Kumar Khanal

  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Bioenergy

Principles and Applications

Yebo Li, Samir Kumar Khanal

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

BIOENERGY:
PRINCIPLES AND APPLICATIONS

BIOENERGY: PRINCIPLES AND APPLICATIONS

With growing concerns over climate change and energy insecurity coupled with dwindling reserves of fossil energy resources, there is a growing search for alternative, renewable energy resources. Energy derived from renewable bioresources such as biomass (energy crops, agri- and forest residues, algae, and biowastes) has received significant attention in recent years. With the growing interest in bioenergy, there has been increasing demand for a broad-ranging, introductory textbook that provides an essential overview of this very subject to students in the field. Bioenergy: Principles and Applications offers an invaluable introduction to both fundamental and applied aspects of bioenergy feedstocks and their processing, as well as lifecycle and techno-economic analyses, and policies as applied to bioenergy.

Bioenergy: Principles and Applications provides readers with foundational information on first-, second-, and third-generation bioenergy, ranging from plant structure, carbohydrate chemistry, mass and energy balance, thermodynamics, and reaction kinetics to feedstock production, logistics, conversion technologies, biorefinery, lifecycle and techno-economic analyses, and government policies. This textbook gives students and professionals an incomparable overview of the rapidly growing field of bioenergy.

Bioenergy: Principles and Applications will be an essential resource for students, engineers, researchers, and industry personnel interested in, and working in, the bioenergy field.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Bioenergy est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Bioenergy par Yebo Li, Samir Kumar Khanal en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Biowissenschaften et Biologie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley-Blackwell
Année
2016
ISBN
9781118568378
Édition
1
Sous-sujet
Biologie

SECTION III
Biological Conversion Technologies

CHAPTER 12
Pretreatment of Lignocellulosic Feedstocks

Chang Geun Yoo and Xuejun Pan

What is included in this chapter?

This chapter covers various pretreatment methods for lignocellulosic feedstocks. Discussion of common pretreatment methods, the mechanism, representative conditions, effects on plant cell wall structure and composition, enzymatic digestibility of pretreated substrates, formation of fermentation inhibitors, and co‐products potential are covered. Pertinent examples and calculations are also included.

12.1 Introduction

Lignocellulosic feedstocks are the most abundant renewable resource on Earth, with an availability of approximately 200 billion dry metric tons per year (Zhang et al., 2007). Examples of lignocellulosic feedstocks include crop residues, such as corn stover, wheat and rice straws, and other crop stalks; forest residues, such as forest thinnings and sawmill residues; and energy crops, such as switchgrass, miscanthus, sweet sorghum, energy cane, Napier grass, and fast‐growing trees (e.g., poplar, eucalyptus, and willow). Compared to starch‐rich feedstocks, these bioresources are cost competitive and do not directly compete with food and feed. Lignocellulosic feedstocks have thus been considered the most promising and sustainable resources for bioenergy, chemicals, and other value‐added products.
Chemically, lignocellulosic biomass is composed of three major components (cellulose, hemicellulose, and lignin) and minor substances (e.g., extractives and ash). These components coexist in the cell wall of plants. In general, lignocellulosic biomass contains approximately 35–45% cellulose, 25–35% hemicellulose, and 15–30% lignin, depending on plant species, age, and tissue type (Figure 12.1). Cellulose is a linear polymer of glucose linked together by ÎČ‐1,4 glycosidic bonds; hemicellulose is a group of branched co‐polymers of multiple sugars (e.g., xylose, mannose, arabinose, galactose, glucose, and uronic acids); and lignin is a three‐dimensional aromatic polymer of phenylpropane units (coniferyl, sinapyl, and p‐coumaryl alcohols), cross‐linked primarily through ether and carbon–carbon bonds (Figure 12.2).
3-Dimensional pie chart of chemical composition of lignocellulosic biomass consisting of lignin (15 to 30%), hemicellulose (25 to 35%), cellulose (35 to 45%), and others (15%).
Fig. 12.1 Chemical composition of lignocellulosic biomass.
Schematic of structural organization starting from plant, to cell, to macrofibril, to crystalline cellulose, with structural formula illustrating lignin as coniferyl, sinapyl, and p-coumaryl alcohols.
Fig. 12.2 Structural organization of the plant cell wall.
Source: Rubin, 2008. Reproduced with permission of Nature Publishing Group.
Current bioconversion of lignocellulosic feedstocks to liquid fuels and chemicals is primarily based on a carbohydrate (or sugar) platform, also known as a biochemical platform. Specifically, the sugar (primarily glucose) is first extracted from lignocellulosic biomass by either enzymatic or chemical (acidic) hydrolysis of cellulose, and then fermented into target products such as ethanol, butanol, propanediol, succinic acid, and lactic acid. Therefore, the hydrolysis of cellulose to glucose (saccharification) is considered to be the most critical and important step of the bioconversion process. However, because of the physical and chemical recalcitrance of the biomass to cellulose hydrolytic enzymes (cellulases), effective saccharification of lignocellulosic feedstock continues to be a technical challenge.

12.2 What Does Pretreatment Do?

In the cell wall, cellulose is surrounded by hemicellulose and lignin, so the cellulose is not readily accessible to enzymes or cellulases (Figure 12.2). In addition to acting as a physical barrier, lignin is a natural inhibitor of biodegradation of cell wall components, thus contributing to the self‐defense system of plants against attacks by insects, bacteria, and fungi. Minor components of the cell wall, such as extractives, also retard the enzymatic hydrolysis of cellulose. The tough and rigid structure and poor permeability of plant cell walls form another barrier to cellulases. Also, the particle size (surfa...

Table des matiĂšres

  1. Cover
  2. Title Page
  3. Table of Contents
  4. List of Contributors
  5. Preface
  6. Acknowledgments
  7. About the Companion Website
  8. SECTION I: Bioenergy Fundamentals
  9. SECTION II: Bioenergy Feedstocks
  10. SECTION III: Biological Conversion Technologies
  11. SECTION IV: Thermal Conversion Technologies
  12. SECTION V: Biobased Refinery
  13. SECTION VI: Bioenergy System Analysis
  14. Index
  15. End User License Agreement
Normes de citation pour Bioenergy

APA 6 Citation

Li, Y., & Khanal, S. K. (2016). Bioenergy (1st ed.). Wiley. Retrieved from https://www.perlego.com/book/995468/bioenergy-principles-and-applications-pdf (Original work published 2016)

Chicago Citation

Li, Yebo, and Samir Kumar Khanal. (2016) 2016. Bioenergy. 1st ed. Wiley. https://www.perlego.com/book/995468/bioenergy-principles-and-applications-pdf.

Harvard Citation

Li, Y. and Khanal, S. K. (2016) Bioenergy. 1st edn. Wiley. Available at: https://www.perlego.com/book/995468/bioenergy-principles-and-applications-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Li, Yebo, and Samir Kumar Khanal. Bioenergy. 1st ed. Wiley, 2016. Web. 14 Oct. 2022.