Computational Physics
eBook - ePub

Computational Physics

Fortran Version

Steven E. Koonin

  1. 656 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Computational Physics

Fortran Version

Steven E. Koonin

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Computational Physics is designed to provide direct experience in the computer modeling of physical systems. Its scope includes the essential numerical techniques needed to "do physics" on a computer. Each of these is developed heuristically in the text, with the aid of simple mathematical illustrations. However, the real value of the book is in the eight Examples and Projects, where the reader is guided in applying these techniques to substantial problems in classical, quantum, or statistical mechanics. These problems have been chosen to enrich the standard physics curriculum at the advanced undergraduate or beginning graduate level. The book will also be useful to physicists, engineers, and chemists interested in computer modeling and numerical techniques. Although the user-friendly and fully documented programs are written in FORTRAN, a casual familiarity with any other high-level language, such as BASIC, PASCAL, or C, is sufficient. The codes in BASIC and FORTRAN are available on the web at http://www.computationalphysics.info. They are available in zip format, which can be expanded on UNIX, Window, and Mac systems with the proper software. The codes are suitable for use (with minor changes) on any machine with a FORTRAN-77 compatible compiler or BASIC compiler. The FORTRAN graphics codes are available as well. However, as they were originally written to run on the VAX, major modifications must be made to make them run on other machines.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Computational Physics è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Computational Physics di Steven E. Koonin in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Ciencias físicas e Física. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
CRC Press
Anno
2018
ISBN
9780429973659
Edizione
1
Categoria
Física
Chapter 1
Basic Mathematical Operations
Three numerical operations — differentiation, quadrature, and the finding of roots — are central to most computer modeling of physical systems. Suppose that we have the ability to calculate the value of a function, f(x), at any value of the independent variable x. In differentiation, we seek one of the derivatives of f at a given value of x. Quadrature, roughly the inverse of differentiation, requires us to calculate the definite integral of f between two specified limits (we reserve the term “integration” for the process of solving ordinary differential equations, as discussed in Chapter 2), while in root finding we seek the values of x (there may be several) at which f vanishes.
If f is known analytically, it is almost always possible, with enough fortitude, to derive explicit formulas for the derivatives of f, and it is often possible to do so for its definite integral as well. However, it is often the case that an analytical method cannot be used, even though we can evaluate f(x) itself. This might be either because some very complicated numerical procedure is required to evaluate f and we have no suitable analytical formula upon which to apply the rules of differentiation and quadrature, or, even worse, because the way we can generate f provides us with its values at only a set of discrete abscissae. In these situations, we must employ approximate formulas expressing the derivatives and integral in terms of the values of f we can compute. Moreover, the roots of all but the simplest functions cannot be found analytically, and numerical methods are therefore essential.
This chapter deals with the computer realization of these three basic operations. The central technique is to approximate f by a simple function (such as first- or second-degree polynomial) upon which these operations can be performed easily. We will derive only the simplest and most commonly used formulas; fuller treatments can be found in many textbooks on numerical analysis.
Image
Figure 1.1 Values of f on an equally-spaced lattice. Dashed lines show the linear interpolation.
1.1 Numerical differentiation
Let us suppose that we are interested in the derivative at x = 0, f′(0). (The formulas we will derive can be generalized simply to arbitrary x by translation.) Let us also suppose that we know f on an equally-spaced lattice of x values,
fn=f(xn);xn=nh (n=0, ±1, ±2,),
and that our goal is to compute an approximate value of f′(0) in terms of the fn (see Figure 1.1).
We begin by using a Taylor series to expand f in the neighborhood of x = 0:
f(x)=f0+xf+x22!f+x33!f+,
(1.1)
where all derivatives are evaluated at x = 0. It is then simp...

Indice dei contenuti

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. Preface to the FORTRAN Edition
  8. How to use this book
  9. Chapter 1: Basic Mathematical Operations
  10. Chapter 2: Ordinary Differential Equations
  11. Chapter 3: Boundary Value and Eigenvalue Problems
  12. Chapter 4: Special Functions and Gaussian Quadrature
  13. Chapter 5: Matrix Operations
  14. Chapter 6: Elliptic Partial Differential Equations
  15. Chapter 7: Parabolic Partial Differential Equations
  16. Chapter 8: Monte Carlo Methods
  17. Appendix A: How to use the programs
  18. Appendix B: Programs for the Examples
  19. Appendix C: Programs for the Projects
  20. Appendix D: Common Utility Codes
  21. Appendix E: Network File Transfer
  22. References
  23. Index
Stili delle citazioni per Computational Physics

APA 6 Citation

Koonin, S. (2018). Computational Physics (1st ed.). CRC Press. Retrieved from https://www.perlego.com/book/1597357/computational-physics-fortran-version-pdf (Original work published 2018)

Chicago Citation

Koonin, Steven. (2018) 2018. Computational Physics. 1st ed. CRC Press. https://www.perlego.com/book/1597357/computational-physics-fortran-version-pdf.

Harvard Citation

Koonin, S. (2018) Computational Physics. 1st edn. CRC Press. Available at: https://www.perlego.com/book/1597357/computational-physics-fortran-version-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Koonin, Steven. Computational Physics. 1st ed. CRC Press, 2018. Web. 14 Oct. 2022.