Traditional Machining Technology
eBook - ePub

Traditional Machining Technology

Machine Tools and Operations

Helmi Youssef, Hassan El-Hofy

  1. 474 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Traditional Machining Technology

Machine Tools and Operations

Helmi Youssef, Hassan El-Hofy

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Traditional Machining Technology describes the fundamentals, basic elements, and operations of general-purpose metal cutting and abrasive machine tools used for the production and grinding of cylindrical and flat surfaces by turning, drilling, and reaming; shaping and planing; and milling processes.

Special-purpose machines and operations used for thread cutting, gear cutting, and broaching processes are included along with semiautomatic, automatic, NC, and CNC machine tools; operations, tooling, mechanisms, accessories, jigs and fixtures, and machine-tool dynamometry are discussed. The treatment throughout the book is aimed at motivating and challenging the reader to explore technologies and economically viable solutions regarding the optimum selection of machining operations for a given task.

This book will be useful to professionals, students, and companies in the industrial, manufacturing, mechanical, materials, and production engineering fields.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Traditional Machining Technology è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Traditional Machining Technology di Helmi Youssef, Hassan El-Hofy in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Materials Science. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
CRC Press
Anno
2020
ISBN
9781000097139

1 Machining Technology

1.1 Introduction

Manufacturing is the industrial activity that changes the form of raw materials to create products. The derivation of the word manufacture reflects its original meaning: to make by hand. As the power of the hand tool is limited, manufacturing is done largely by machinery today. Manufacturing technology constitutes all methods used for shaping the raw metal materials into a final product. As shown in Figure 1.1, manufacturing technology includes plastic forming, casting, welding, and machining technologies. Methods of plastic forming are used extensively to force metal into the required shape. The processes are diverse in scale, varying from the forging and rolling of ingots weighing several tons to the drawing of wires less than 0.025 mm in diameter. Most large-scale deformation processes are performed at high temperatures, so that a minimum of force is needed, and the consequent recrystallization refines the metallic structure. Cold forming is used when smoother surface finish and high-dimensional accuracy are required. Metals are produced in the form of bars or plates. On the other hand, casting produces a large variety of components in a single operation by pouring liquid metals into molds and allowing them to solidify. Parts manufactured by plastic forming, casting, sintering, and molding are often finished by subsequent machining operations, as shown in Figure 1.2.
Images
FIGURE 1.1 Classification of manufacturing processes.
Images
FIGURE 1.2 Definition of manufacturing.
Machining is the removal of the unwanted material (machining allowance) from the workpiece (WP) so as to obtain a finished product of the desired size, shape, and surface quality. The practice of removal of machining allowance through cutting techniques was first adopted using simple handheld tools made from bone, stick, or stone, which were replaced by bronze or iron tools. Water, steam, and later electricity were used to drive such tools in power-driven metal cutting machines (machine tools). The development of new tool materials opened a new era for the machining industry in which machine tool development took place. Nontraditional machining techniques offered alternative methods for machining parts of complex shapes in hard, stronger, and tougher materials that are difficult to cut by traditional methods. Figure 1.3 shows the general classification of machining methods based on the material removal mechanism.
Images
FIGURE 1.3 Classification of machining processes. AJM, abrasive jet machining; WJM, water jet machining; USM, ultrasonic machining; AFM, abrasive flow machining; MAF, magnetic abrasive finishing; CHM, chemical machining; ECM, electrochemical machining; EDM, electrodischarge machining; LBM, laser beam machining; PBM, plasma beam machining.
Compared with plastic-forming technology, machining technology is usually adopted whenever part accuracy and surface quality are of prime importance. The technology of material removal in machining is carried out on machine tools, which are responsible for generating the motions required for producing a given part geometry. Machine tools form around 70% of operating production machines and are characterized by their high production accuracy compared with metal-forming machine tools. Machining activities constitute approximately 20% of the manufacturing activities in the United States.
This book covers the different technologies used for material removal processes in which traditional machine tools and operations are employed. Machine tool elements, drives, and accessories are introduced for proper selection and understanding of their functional characteristics and technological requirements.

1.2 History of Machine Tools

The development of metal-cutting machines (once briefly called machine tools) started with the invention of the cylinder, which was changed to a roller guided by a journal bearing. The ancient Egyptians used these rollers for transporting the required stones from a quarry to the building site. The use of rollers initiated the introduction of the first wooden drilling machine, which dates back to 4000 BC. In such a machine, a pointed flint stone tip acted as a tool. The first deep-hole drilling machine was built by Leonardo da Vinci (1452–1519). In 1840, the first engine lathe was introduced. Maudslay (1771–1831) added the lead screw, back gears, and the tool post to the previous design. Later, slide ways for the tailstock and automatic tool feeding systems were incorporated. Planers and shapers have evolved and were modified by Sellers (1824–1905). Fitch designed the first turret lathe in 1845. That machine carried eight cutting tools on a horizontally mounted turret for producing screws. A completely automatic turret lathe was invented by Spencer in 1896. He was also credited with the development of the multispindle automatic lathe. In 1818, Whitney built the first milling machine; the cylindrical grinding machine was built for the first time by Brown and Sharpe in 1874. The first gear shaper was introduced by Fellows in 1896. I...

Indice dei contenuti

  1. Cover
  2. Half-Title
  3. Title
  4. Copyright
  5. Dedication
  6. Contents
  7. Preface
  8. Acknowledgments
  9. Author Biographies
  10. List of Symbols
  11. List of Acronyms
  12. Chapter 1 Machining Technology
  13. Chapter 2 Basic Elements and Mechanisms of Machine Tools
  14. Chapter 3 General-Purpose ­Metal-Cutting Machine Tools
  15. Chapter 4 General-Purpose Abrasive Machine Tools
  16. Chapter 5 Thread-Cutting Machines and Operations
  17. Chapter 6 Gear-Cutting Machines and Operations
  18. Chapter 7 Turret and Capstan Lathes
  19. Chapter 8 Automated Lathes
  20. Chapter 9 Numerical Control and Computer Numerical Control
  21. Chapter 10 Automated Manufacturing Systems
  22. Chapter 11 Machine-Tool Dynamometers
  23. Index
Stili delle citazioni per Traditional Machining Technology

APA 6 Citation

Youssef, H., & El-Hofy, H. (2020). Traditional Machining Technology (2nd ed.). CRC Press. Retrieved from https://www.perlego.com/book/1639737/traditional-machining-technology-machine-tools-and-operations-pdf (Original work published 2020)

Chicago Citation

Youssef, Helmi, and Hassan El-Hofy. (2020) 2020. Traditional Machining Technology. 2nd ed. CRC Press. https://www.perlego.com/book/1639737/traditional-machining-technology-machine-tools-and-operations-pdf.

Harvard Citation

Youssef, H. and El-Hofy, H. (2020) Traditional Machining Technology. 2nd edn. CRC Press. Available at: https://www.perlego.com/book/1639737/traditional-machining-technology-machine-tools-and-operations-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Youssef, Helmi, and Hassan El-Hofy. Traditional Machining Technology. 2nd ed. CRC Press, 2020. Web. 14 Oct. 2022.