2D Nanoscale Heterostructured Materials
eBook - ePub

2D Nanoscale Heterostructured Materials

Synthesis, Properties, and Applications

Satyabrata Jit,Santanu Das

  1. 284 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

2D Nanoscale Heterostructured Materials

Synthesis, Properties, and Applications

Satyabrata Jit,Santanu Das

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area.

  • Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties
  • Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials
  • Discusses the applications of 2D heterostructured materials in various high-performance devices

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
2D Nanoscale Heterostructured Materials è disponibile online in formato PDF/ePub?
Sì, puoi accedere a 2D Nanoscale Heterostructured Materials di Satyabrata Jit,Santanu Das in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Materials Science. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Elsevier
Anno
2020
ISBN
9780128176795
1

Discovery and characterization of 2D materials and their heterostructures

Kamal Choudhary and Francesca Tavazza, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, United States

Abstract

We introduce a simple criterion to identify two-dimensional (2D) materials based on the comparison between experimental lattice constants and lattice constants mainly, obtained from density functional theory (DFT) calculation to systematically discover 2D materials. Specifically, if the relative difference between the two lattice constants for a specific material is greater than or equal to 5%, we predict them to be good candidates for 2D materials. We have predicted at least 1356 such 2D materials. In addition to the lattice constant criteria, we show the usefulness of data-mining approaches to discover 2D materials. To validate our criterion, we calculated the exfoliation energy of the suggested layered materials, and we found that in 88.9% of the cases the currently accepted criterion for exfoliation was satisfied. For all the systems satisfying our criterion, we manually create single layer systems and calculate their energetics, structural, electronic, vibrational, and elastic properties for both the bulk and the single layer cases. Additionally, we examine the cases where combing the predicted 2D materials are possible for heterostructures based on strain due to lattice mismatch. For all the systems where strains are reasonably less, we predict the properties of the heterostructures.

Keywords

2D materials; exfoliation; heterostructures; characterization; discovery of 2D materials

1.1 Introduction

Bonding in solids can be primarily of four types: metallic, covalent, ionic and vdW bonding [1]. Often a material has only one type of bonding, say Silicon with covalent bonding. However, two-dimensional (2D) materials (like graphene, black phosphorous, and MoS2, Fig. 1–1) are characterized by intralayer covalent and interlayer vdW bonding [2]. The 2D materials have many interesting/technologically applicable properties, that are often different from their 3D counterpart. For instance, due to quantum confinement effects, often bang gaps increase going from bulk to ML, and even transform from “indirect” to “direct” (2H-MoS2) allowing enhanced tunability [3]. Due to the absence of dangling bonds on the 2D surfaces, 2D materials can exist in free-standing monolater atomic forms unlike conventional semiconductors (silicon) allowing the development of miniatured electronic devices [4]. The 2D materials cover a wide variety of chemistry and bandgaps. For instance, graphene is semimetallic, 1T′-MoTe2 metallic, 2H-MoS2 semiconducting and h-BN insulating in nature. Furthermore, the 2D materials can be ferromagnetic [5] and host topologically nontrivial bands [6]. Examples of a few commonly known 2D materials are shown in Fig. 1–1. Most importantly, the absence of dangling bonds allows the integration of highly disparate materials without stringent lattice matching criteria [4]. This enables immense freedom to integrate 2D materials to create vdW heterostructures. The creation of vdW heterostructures allows the creation of extraordinary devices including broadband photodetectors with ultrahigh gain, generation of new transistors with unprecedented speed and flexibility.
image

Figure 1–1 Bandgap trends in 2D materials. Bandgaps vary in a wide range for 2D materials, for example: 1T′-MoTe2 is metallic, graphene is semi-metallic, Black-P, 2H-MoS2, SnS (buckled and puckered phases) are semiconducting, and h-BN, AlClO are insulating: (A) graphene; (B) 1T′-MoTe2; (C) black-P; (D) 2H-MoS2; (E) puckered SnS; (F) buckled SnS; (G) hexagonal BN; and (H) AlClO.
In fact, 2D materials belong to a special class of low-dimensional materials with vdW bonding primarily in one crystallographic direction. The low-dimensional materials can also be 1D and 0D in nature characterized by the presence of vdW bonding in two and three crystallographic directions respectively as shown in Fig. 1–2.
image

Figure 1–2 Figure showing different classes of materials, for example: (A) 3D-bulk diamond Si, (B) 2D-bulk 2H-MoS2, (C) 1D-bulk MoBr3, (D) 0D-bulk BiI3. Dimensionality is reduced due to the presence of vdW bonding in one, two, or three crystallographic dimensions.
In addition to 2D–2D vdW heterostructures, there has been recent research [7] on 2D–1D and 2D–0D vdW heterostructures as well. As the number of components in an electronic device doubles every 2 years (Moore’s law), transistors have shrunk that no longer can fit on conventional semiconductors such as silicon chips. But the 2D vdW heterostructures can allow this shrinking because of controlled electronic bandstructures and ultralow thickness.

1.2 2D materials discovery and classifications

First 2D material graphene was discovered [8] in 2004 by two researchers at the University of Manchester, Prof. Andre Geim and Prof. Kos...

Indice dei contenuti

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. List of contributors
  7. Preface
  8. 1. Discovery and characterization of 2D materials and their heterostructures
  9. 2. Design and synthesis of two-dimensional materials and their heterostructures
  10. 3. Characterizations of nanoscale two-dimensional materials and heterostructures
  11. 4. Nanoheterostructured materials based on conjugated polymer and two-dimensional materials: synthesis and applications
  12. 5. Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications
  13. 6. Electronic and optoelectronic properties of the heterostructure devices composed of two-dimensional layered materials
  14. 7. Device physics and device integration of two-dimensional heterostructures
  15. 8. Electrocatalytic properties of two-dimensional transition metal dichalcogenides and their hetrostructures in energy applications
  16. 9. Emerging bio-applications of two-dimensional nanoheterostructure materials
  17. Index
Stili delle citazioni per 2D Nanoscale Heterostructured Materials

APA 6 Citation

[author missing]. (2020). 2D Nanoscale Heterostructured Materials ([edition unavailable]). Elsevier Science. Retrieved from https://www.perlego.com/book/1810589/2d-nanoscale-heterostructured-materials-synthesis-properties-and-applications-pdf (Original work published 2020)

Chicago Citation

[author missing]. (2020) 2020. 2D Nanoscale Heterostructured Materials. [Edition unavailable]. Elsevier Science. https://www.perlego.com/book/1810589/2d-nanoscale-heterostructured-materials-synthesis-properties-and-applications-pdf.

Harvard Citation

[author missing] (2020) 2D Nanoscale Heterostructured Materials. [edition unavailable]. Elsevier Science. Available at: https://www.perlego.com/book/1810589/2d-nanoscale-heterostructured-materials-synthesis-properties-and-applications-pdf (Accessed: 15 October 2022).

MLA 7 Citation

[author missing]. 2D Nanoscale Heterostructured Materials. [edition unavailable]. Elsevier Science, 2020. Web. 15 Oct. 2022.