Gas Turbine Engineering Handbook
eBook - ePub

Gas Turbine Engineering Handbook

Meherwan P. Boyce

  1. 1,000 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Gas Turbine Engineering Handbook

Meherwan P. Boyce

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Written by one of the field's most well known experts, the Gas Turbine Engineering Handbook has long been the standard for engineers involved in the design, selection, maintenance and operation of gas turbines. With far reaching, comprehensive coverage across a range of topics from design specifications to maintenance troubleshooting, this one-stop resource provides newcomers to the industry with all the essentials to learn and fill knowledge gaps, and established practicing gas turbine engineers with a reliable go-to reference. This new edition brings the Gas Turbine Engineering Handbook right up to date with new legislation and emerging topics to help the next generation of gas turbine professionals understand the underlying principles of gas turbine operation, the economic considerations and implications of operating these machines, and how they fit in with alternative methods of power generation.

  • The most comprehensive one-stop source of information on industrial gas turbines, with vital background, maintenance information, legislative details and calculations combined in an essential all-in-one reference
  • Written by an industry-leading consultant and trainer and suitable for use as a training companion or a reliable dip-in guide
  • Includes hard-won information from industry experts in the form of case histories that offer practical trouble-shooting guidance and solutions

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Gas Turbine Engineering Handbook è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Gas Turbine Engineering Handbook di Meherwan P. Boyce in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technik & Maschinenbau e Maschinenbau. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2011
ISBN
9780123838438
Edizione
4
Categoria
Maschinenbau
Part I
Design: Theory and Practice
Outline
1

An Overview of Gas Turbines

Publisher Summary

The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. The utilization of gas turbine exhaust gases, for steam generation or the heating of other heat transfer mediums, or the use of cooling or heating buildings or parts of cities is not a new concept and is currently being exploited to its full potential. The aerospace engines have been leaders in most of the technology in the gas turbine. The design criteria for these engines were high reliability, high performance, with many starts and flexible operation throughout the flight envelope. The industrial gas turbine has always emphasized long life and this conservative approach has resulted in the industrial gas turbine in many aspects giving up high performance for rugged operation. The gas turbine produces various pollutants in the combustion of the gases in the combustor. These include smoke, unburnt hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen.
Gas turbine; simple-cycle gas turbine; compressor; regenerator; combustor; axial-flow turbine; radial-inflow turbine
The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. It has found increasing service in the past 60 years in the power industry among both utilities and merchant plants, as well as in the petrochemical industry. Its compactness, low weight and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils and biomass gases. The last 20 years have seen a large growth in gas turbine technology, spearheaded by the growth in materials technology, new coatings, new cooling schemes and combined cycle power plants. This chapter presents an overview of the development of modern gas turbines and gas turbine design considerations. The six categories of simple-cycle gas turbines (frame type heavy-duty; aircraft-derivative; industrial-type; small; vehicular; and micro) are described. The major gas turbine components (compressors; regenerators/recuperators; fuel type; and combustors) are outlined. A gas turbine produces various pollutants in the combustion of the gases in the combustor and the potential environmental impact of gas turbines is considered. The two different types of combustor (diffusion; dry low NOx, (DLN) or dry low emission (DLE)), the different methods to arrange combustors on a gas turbine, and axial-flow and radial-inflow turbines are described. Developments in materials and coatings are outlined.
The gas turbine is a power plant that produces a great amount of energy depending on its size and weight. The gas turbine has found increasing service in the past 60 years in the power industry among both utilities and merchant plants as well as the petrochemical industry throughout the world. Its compactness, low weight, and multiple fuel application make it a natural power plant for offshore platforms. Today there are gas turbines that run on natural gas, diesel fuel, naphtha, methane, crude, low-BTU gases, vaporized fuel oils, and biomass gases.
The last 20 years have seen a large growth in gas turbine technology. The growth is spearheaded by the growth of materials technology, new coatings, new cooling schemes, and the growth of combined-cycle power plants. This, with the conjunction of increase in compressor pressure ratio from 7:1 to as high as 45:1, has increased simple-cycle gas turbine thermal efficiency from about 15% to 45%.
Table 1-1 gives an economic comparison of various generation technologies from the initial cost of such systems to the operating costs of these systems. Because distributed generation is very site specific, the cost will vary and the justification of installation of these types of systems will also vary. Sites for distributed generation vary from large metropolitan areas to the slopes of the Himalayan mountain range. The economics of power g...

Indice dei contenuti

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Preface to the Fourth Edition
  6. Preface to the Third Edition
  7. Preface to the Second Edition
  8. Preface to the First Edition
  9. Foreword to the First Edition
  10. About the Author
  11. Part I: Design: Theory and Practice
  12. Part II: Major Components
  13. Part III: Materials, Fuel Technology, and Fuel Systems
  14. Part IV: Auxiliary Components and Accessories
  15. Part V: Installation, Operation, and Maintenance
  16. Appendix. Equivalent Units
  17. Index
Stili delle citazioni per Gas Turbine Engineering Handbook

APA 6 Citation

Boyce, M. (2011). Gas Turbine Engineering Handbook (4th ed.). Elsevier Science. Retrieved from https://www.perlego.com/book/1837069/gas-turbine-engineering-handbook-pdf (Original work published 2011)

Chicago Citation

Boyce, Meherwan. (2011) 2011. Gas Turbine Engineering Handbook. 4th ed. Elsevier Science. https://www.perlego.com/book/1837069/gas-turbine-engineering-handbook-pdf.

Harvard Citation

Boyce, M. (2011) Gas Turbine Engineering Handbook. 4th edn. Elsevier Science. Available at: https://www.perlego.com/book/1837069/gas-turbine-engineering-handbook-pdf (Accessed: 15 October 2022).

MLA 7 Citation

Boyce, Meherwan. Gas Turbine Engineering Handbook. 4th ed. Elsevier Science, 2011. Web. 15 Oct. 2022.