Applied Learning Algorithms for Intelligent IoT
eBook - ePub

Applied Learning Algorithms for Intelligent IoT

Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan, Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan

  1. 356 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Applied Learning Algorithms for Intelligent IoT

Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan, Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

This book vividly illustrates all the promising and potential machine learning (ML) and deep learning (DL) algorithms through a host of real-world and real-time business use cases. Machines and devices can be empowered to self-learn and exhibit intelligent behavior. Also, Big Data combined with real-time and runtime data can lead to personalized, prognostic, predictive, and prescriptive insights. This book examines the following topics:

  • Cognitive machines and devices


  • Cyber physical systems (CPS)


  • The Internet of Things (IoT) and industrial use cases


  • Industry4.0 for smarter manufacturing


  • Predictive and prescriptive insights for smarter systems


  • Machine vision and intelligence


  • Natural interfaces


  • K-means clustering algorithm


  • Support vector machine (SVM) algorithm


  • A priori algorithms


  • Linear and logistic regression


Applied Learning Algorithms for Intelligent IoT clearly articulates ML and DL algorithms that can be used to unearth predictive and prescriptive insights out of Big Data. Transforming raw data into information and relevant knowledge is gaining prominence with the availability of data processing and mining, analytics algorithms, platforms, frameworks, and other accelerators discussed in the book. Now, with the emergence of machine learning algorithms, the field of data analytics is bound to reach new heights.

This book will serve as a comprehensive guide for AI researchers, faculty members, and IT professionals. Every chapter will discuss one ML algorithm, its origin, challenges, and benefits, as well as a sample industry use case for explaining the algorithm in detail. The book's detailed and deeper dive into ML and DL algorithms using a practical use case can foster innovative research.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Applied Learning Algorithms for Intelligent IoT è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Applied Learning Algorithms for Intelligent IoT di Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan, Pethuru Raj Chelliah, Usha Sakthivel, Susila Nagarajan in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Informatica e Intelligenza artificiale (IA) e semantica. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2021
ISBN
9781000461367

1

Convolutional Neural Network in Computer Vision

D. Aishwarya1 and R.I. Minu2
1Research Scholar, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
2SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
DOI: 10.1201/9781003119838-1
Contents
Introduction
Convolutional Neural Network (CNN)
Distinctive Properties of CNN
Activation Functions for CNN
Loss Function
Datasets and Errors
Bias and Variance
Overfitting and Underfitting
Understanding Padding and Stride
Padding
Stride
Parameters and Hyper Parameters
CONV Layer
Filter
Feature Map
Convolution Operation
Key Points about Convolution Layers and Filters
Pooling Layer
Key Points about Pooling Layer
Types of Pooling
Forward Propagation
Calculating the Parameters
Activation Shape and Size
Backward Propagation
Optimizers
Other Ways to Improve the Performance of CNN
Image Data Augmentation
Deeper Hidden Layers
Early Stopping
Application of CNN
Image Classification
RCNN and Object Detection
Region-Based Convolutional Neural Network (R-CNN)
Fast R-CNN
Faster R-CNN
You Only Look Once (YOLO)
Transfer Learning
Transfer Learning for CNN
Fine-Tuning or Freezing?
Neural Style Transfer (NST)

Introduction

Emergence of artificial intelligence (AI) has made machines “Smart.” By “Smart,” we mean the ability of the machine (possibly a computer) to process the given data with rationality, like an intelligent human being, and take a suitable decision. AI achieves this intelligence with the help of its subsets of algorithms (see Figure 1.1).
Figure 1.1 Subsets of Artificial Intelligence
AI is a broader field that includes machine learning (ML), artificial neural network (ANN), and deep learning (DL) as its subsets. AI is achieved by ANN, which is a network of artificial neurons resembling a biological neuron and the nervous system. ML enables the machines to process the data, make decision, and optimize the results based on experience. ML primarily requires a feature engineer to do the feature engineering process. Also, ML works its best for structured dataset (mostly comprises numerical data) but is proven inefficient for unstructured types.
To process the unstructured and continuous data like video, speech, etc., we need more complex neural network. Here comes in the DL with better results on processing the unstructured data. One of the biggest advantages of DL is that it features engineering automatically, that is, no manual feature selection is required. Also, ML requires manual intervention when the algorithm is struck with optimization problem, which is also automated in DL. DL plays the key role in implementing and visualizing the actual AI. Deep learning, however, requires a large amount of dataset for the purpose of training, which in turn requires a deep network of layers of neurons to process the features and hence the name “deep learning.”
DL comprises many algorithms for different types of data. Of those, convolutional neural network (CNN) is mainly used to process images and solve computer vision problems. The idea of CNNs can be traced back to 1980, when K. Fakushima proposed “neocognition” – a hierarchical multi-layered neural networks, which is self-organized and unaffected by the translation operation in the dataset (shift in positions of patterns). It was primarily created for pattern recognition.
The first standard CONVNet was introduced by Yann LeCunn in 1998, in his research article titled “Object Recognition with Gradient Based Learning.” It is important to note that Yann LeCunn has cited Fakushima’s article in his research work, and the CONVNet of LeCunn has a structure similar to neocognition with back propagation added to the network. Thenceforth, multiple improvements and the extension were made to it.

Convolutional Neural Network (CNN)

Convolutional neural network is primarily used for operations like image classification, segmentation, and other computer vision operations. CNN is also called shape/space invariant artificial neural network (SIAAN) based on its shared weights and translation invariance properties. The key idea behind CNN is to capture the local patterns through convolution operation.
In general, each CNN architecture has a common working flow. A CNN consists of multiple layers of convolution and pooling and a fully connected ANN. A layer in CNN may comprise one convolution layer and one pooling layer together as a single layer if the count of convolution layer and pooling layer is same. Most commonly used type is two convolution layers followed by a single pooling layer.
The number of layers in a CNN architecture depends on the complexity of the application. The output of the last layer is passed to an ANN. The convolution layers and the pooling layers always perform the same operation of learning the input image. The fully connected networks perform the required operations, such as regression, classification, etc.
At each convolution layer, a local pattern is obtained by applying filters throughout the image. Filters can also be mentioned as kernels. The Initial/lower-level layers of the CNN obtain the elementary pattern of the image ...

Indice dei contenuti

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Contents
  6. Contributor List
  7. Chapter 1: Convolutional Neural Network in Computer Vision
  8. Chapter 2: Trends and Transition in the Machine Learning (ML) Space
  9. Chapter 3: Next-Generation IoT Use Cases across Industry Verticals Using Machine Learning Algorithms
  10. Chapter 4: A Panoramic View of Cyber Attack Detection and Prevention Using Machine Learning and Deep Learning Approaches
  11. Chapter 5: Regression Algorithms in Machine Learning
  12. Chapter 6: Machine Learning-Based Industrial Internet of Things (IIoT) and Its Applications
  13. Chapter 7: Employee Turnover Prediction Using Single Voting Model
  14. Chapter 8: A Novel Implementation of Sentiment Analysis Toward Data Science
  15. Chapter 9: Conspectus of k-Means Clustering Algorithm
  16. Chapter 10: Systematic Approach to Deal with Internal Fragmentation and Enhancing Memory Space during COVID-19
  17. Chapter 11: IoT Automated Spy Drone to Detect and Alert Illegal Drug Plants for Law Enforcement
  18. Chapter 12: Expounding k-Means-Inspired Network Partitioning Algorithm for SDN Controller Placement
  19. Chapter 13: An Intelligent Deep Learning-Based Wireless Underground Sensor System for IoT-Based Agricultural Application
  20. Chapter 14: Predicting Effectiveness of Solar Pond Heat Exchanger with LTES Containing CuO Nanoparticle Using Machine Learning
  21. Index
Stili delle citazioni per Applied Learning Algorithms for Intelligent IoT

APA 6 Citation

[author missing]. (2021). Applied Learning Algorithms for Intelligent IoT (1st ed.). CRC Press. Retrieved from https://www.perlego.com/book/2905750/applied-learning-algorithms-for-intelligent-iot-pdf (Original work published 2021)

Chicago Citation

[author missing]. (2021) 2021. Applied Learning Algorithms for Intelligent IoT. 1st ed. CRC Press. https://www.perlego.com/book/2905750/applied-learning-algorithms-for-intelligent-iot-pdf.

Harvard Citation

[author missing] (2021) Applied Learning Algorithms for Intelligent IoT. 1st edn. CRC Press. Available at: https://www.perlego.com/book/2905750/applied-learning-algorithms-for-intelligent-iot-pdf (Accessed: 15 October 2022).

MLA 7 Citation

[author missing]. Applied Learning Algorithms for Intelligent IoT. 1st ed. CRC Press, 2021. Web. 15 Oct. 2022.