Data Science and Big Data Analytics
eBook - ePub

Data Science and Big Data Analytics

Discovering, Analyzing, Visualizing and Presenting Data

Condividi libro
  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

Data Science and Big Data Analytics

Discovering, Analyzing, Visualizing and Presenting Data

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software.

This book will help you:

  • Become a contributor on a data science team
  • Deploy a structured lifecycle approach to data analytics problems
  • Apply appropriate analytic techniques and tools to analyzing big data
  • Learn how to tell a compelling story with data to drive business action
  • Prepare for EMC Proven Professional Data Science Certification

Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Data Science and Big Data Analytics è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Data Science and Big Data Analytics di in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Ciencia de la computación e Minería de datos. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
Wiley
Anno
2015
ISBN
9781118876053

Chapter 1
Introduction to Big Data Analytics

Key Concepts

  1. Big Data overview
  2. State of the practice in analytics
  3. Business Intelligence versus Data Science
  4. Key roles for the new Big Data ecosystem
  5. The Data Scientist
  6. Examples of Big Data analytics
Much has been written about Big Data and the need for advanced analytics within industry, academia, and government. Availability of new data sources and the rise of more complex analytical opportunities have created a need to rethink existing data architectures to enable analytics that take advantage of Big Data. In addition, significant debate exists about what Big Data is and what kinds of skills are required to make best use of it. This chapter explains several key concepts to clarify what is meant by Big Data, why advanced analytics are needed, how Data Science differs from Business Intelligence (BI), and what new roles are needed for the new Big Data ecosystem.

1.1 Big Data Overview

Data is created constantly, and at an ever-increasing rate. Mobile phones, social media, imaging technologies to determine a medical diagnosis—all these and more create new data, and that must be stored somewhere for some purpose. Devices and sensors automatically generate diagnostic information that needs to be stored and processed in real time. Merely keeping up with this huge influx of data is difficult, but substantially more challenging is analyzing vast amounts of it, especially when it does not conform to traditional notions of data structure, to identify meaningful patterns and extract useful information. These challenges of the data deluge present the opportunity to transform business, government, science, and everyday life.
Several industries have led the way in developing their ability to gather and exploit data:
  • Credit card companies monitor every purchase their customers make and can identify fraudulent purchases with a high degree of accuracy using rules derived by processing billions of transactions.
  • Mobile phone companies analyze subscribers' calling patterns to determine, for example, whether a caller's frequent contacts are on a rival network. If that rival network is offering an attractive promotion that might cause the subscriber to defect, the mobile phone company can proactively offer the subscriber an incentive to remain in her contract.
  • For companies such as LinkedIn and Facebook, data itself is their primary product. The valuations of these companies are heavily derived from the data they gather and host, which contains more and more intrinsic value as the data grows.
Three attributes stand out as defining Big Data characteristics:
  • Huge volume of data: Rather than thousands or millions of rows, Big Data can be billions of rows and millions of columns.
  • Complexity of data types and structures: Big Data reflects the variety of new data sources, formats, and structures, including digital traces being left on the web and other digital repositories for subsequent analysis.
  • Speed of new data creation and growth: Big Data can describe high velocity data, with rapid data ingestion and near real time analysis.
Although the volume of Big Data tends to attract the most attention, generally the variety and velocity of the data provide a more apt definition of Big Data. (Big Data is sometimes described as having 3 Vs: volume, variety, and velocity.) Due to its size or structure, Big Data cannot be efficiently analyzed using only traditional databases or methods. Big Data problems require new tools and technologies to store, manage, and realize the business benefit. These new tools and technologies enable creation, manipulation, and management of large datasets and the storage environments that house them. Another definition of Big Data comes from the McKinsey Global report from 2011:Big Data is data whose scale, distribution, diversity, and/or timeliness require the use of new technical architectures and analytics to enable insights that unlock new sources of business value.
McKinsey & Co.; Big Data: The Next Frontier for Innovation, Competition, and Productivity [1]
McKinsey's definition of Big Data implies that organizations will need new data architectures and analytic sandboxes, new tools, new analytical methods, and an integration of multiple skills into the new role of the data scientist, which will be discussed in Section 1.3. Figure 1.1 highlights several sources of the Big Data deluge.
image
Figure 1.1 What's driving the data deluge
The rate of data creation is accelerating, driven by many of the items in Figure 1.1.
Social media and genetic sequencing are among the fastest-growing sources of Big Data and examples of untraditional sources of data being used for analysis.
For example, in 2012 Facebook users posted 700 status updates per second worldwide, which can be leveraged to deduce latent interests or political views of users and show relevant ads. For instance, an update in which a woman changes her relationship status from “single” to “engaged” would trigger ads on bridal dresses, wedding planning, or name-changing services.
Facebook can also construct social graphs to analyze which users are connected to each other as an interconnected network. In March 2013, Facebook released a new feature called “Graph Search,” enabling users and developers to search social graphs for people with similar interests, hobbies, and shared locations.
Another example comes from genomics. Genetic sequencing and human genome mapping provide a detailed understanding of genetic makeup and lineage. The health care industry is looking toward these advances to help predict which illnesses a person is likely to get in his lifetime and take steps to avoid these maladies or reduce their impact through the use of personalized medicine and treatment. Such tests also highlight typical responses to different medications and pharmaceutical drugs, heightening risk awareness of specific drug treatments.
While data has grown, the cost to perform this work has fallen dramatically. The cost to sequence one human genome has fallen from $100 million in 2001 to $10,000 in 2011, and the cost continues to drop. Now, websites such as 23andme (Figure 1.2) offer genotyping for less than $100. Although genotyping analyzes only a fraction of a genome and does not provide as much granularity as genetic sequencing, it does point to the fact that data and complex analysis is becoming more prevalent and less expensive to deploy.
image
Figure 1.2 Examples of what can be learned through genotyping, from 23andme.com
As illustrated by the examples of social media and genetic sequencing, individuals and organizations both derive benefits from analysis of ever-larger and more complex datasets that require increasingly powerful analytical capabilities.

1.1.1 Data Structures

Big data can come in multiple forms, including structured and non-structured data such as financial data, text files, multimedia files, and genetic mappings. Contrary to much of the traditional data analysis performed by organizations, most of the Big Data is unstructured or sem...

Indice dei contenuti