Fault Trees
eBook - ePub

Fault Trees

Nikolaos Limnios

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Fault Trees

Nikolaos Limnios

Book details
Book preview
Table of contents
Citations

About This Book

Fault tree analysis is an important technique in determining the safety and dependability of complex systems. Fault trees are used as a major tool in the study of system safety as well as in reliability and availability studies.
The basic methods – construction, logical analysis, probability evaluation and influence study – are described in this book. The following extensions of fault trees, non-coherent fault trees, fault trees with delay and multi-performance fault trees, are also explained. Traditional algorithms for fault tree analysis are presented, as well as more recent algorithms based on binary decision diagrams (BDD).

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Fault Trees an online PDF/ePUB?
Yes, you can access Fault Trees by Nikolaos Limnios in PDF and/or ePUB format, as well as other popular books in Tecnología e ingeniería & Ingeniería eléctrica y telecomunicaciones. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1

Single-Component Systems

1.1 Distribution of failure and reliability

1.1.1 Function of distribution and density of failure

We will study here the stochastic behaviour of single-component systems being subjected to failures (breakdowns) by observing them over a period of time. Let us simplify things by assuming that the system is put to work at the instant t = 0 for the first time and that it presents a single mode of failure.
The component, starting a lifetime period at the instant t = 0, is functioning for a certain period of time X1 (random) at the end of which it breaks down. It remains in this state for a period of time Y1 (random) during its replacement (or repair) and, at the end of this time, the component is again put to work and so on. In this case, the system is said to be repairable. In the contrary case, that is to say, when the component breaks down and continues to remain in this state, the system is said to be non-repairable.
It is possible to present a graphic description of the behavior of the above- described system in different ways, the phase diagram being the most common.
Let X be a random variable (r.v.) representing the lifetime of the system with F, its cumulative distribution function (c.d.f.):
ch1-eq1.gif
Figure 1.1 Phase diagrams: (a) non-repairable system and (b) repairable system 1: state of good functioning 0: state of breakdown
ch1-image18-01.gif
If F is absolutely continuous, the random variable X has a probability density function (p.d.f.) f and can be written as:
ch1-eq2.gif
Regarding the probability evaluation of fault trees, we always have to make the distinction between the occurrence or arrival of an event and its existence at the time t. Let us consider, for example, that the f.r. F of the duration of life of a component has an p.d.f. f. The assertion “the occurrence of the failure of the component at the time t” means that the failure took place within the time interval (t, t +
delta.gif
t], where Δt → 0; as a result, its probability is given by: f(t)
delta.gif
t + o(
delta.gif
t). On the other hand, the assertion “existence of the failure at the time t” means that the failure took place at the time xt and its probab...

Table of contents

  1. Cover
  2. Titlepage
  3. Copyright
  4. Introduction
  5. Chapter 1: Single-Component Systems
  6. Chapter 2: Multi-Component Systems
  7. Chapter 3: Construction of Fault Trees
  8. Chapter 4: Minimal Sets
  9. Chapter 5: Probabilistic Assessment
  10. Chapter 6: Influence Assessment
  11. Chapter 7: Modules – Phases – Common Modes
  12. Chapter 8: Extensions: Non-Coherent, Delay and Multistate Fault Trees
  13. Chapter 9: Binary Decision Diagrams
  14. Chapter 10: Stochastic Simulation of Fault Trees
  15. Exercises
  16. Appendices
  17. Main Notations
  18. Bibliography
  19. Index
Citation styles for Fault Trees

APA 6 Citation

Limnios, N. (2013). Fault Trees (1st ed.). Wiley. Retrieved from https://www.perlego.com/book/1008633/fault-trees-pdf (Original work published 2013)

Chicago Citation

Limnios, Nikolaos. (2013) 2013. Fault Trees. 1st ed. Wiley. https://www.perlego.com/book/1008633/fault-trees-pdf.

Harvard Citation

Limnios, N. (2013) Fault Trees. 1st edn. Wiley. Available at: https://www.perlego.com/book/1008633/fault-trees-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Limnios, Nikolaos. Fault Trees. 1st ed. Wiley, 2013. Web. 14 Oct. 2022.