Toothwear
eBook - ePub

Toothwear

The ABC of the Worn Dentition

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Toothwear

The ABC of the Worn Dentition

Book details
Book preview
Table of contents
Citations

About This Book

This is one of the first books to provide a clinically focussed account of the diagnosis, prevention and treatment of all forms of toothwear. Bringing together the latest research, it is compiled by international leaders in the field to create an essential clinical guide for dental practitioners. The book covers all forms of toothwear and dental erosion, and is presented in a practical format that allows for ease of reference and helps assimilate clinical information quickly. It defines the stages of toothwear, provides schematic approaches to allow better understanding of the key role that saliva plays, and highlights the differences between acid erosion and dental caries. Importantly for clinicians, it provides a framework for developing best practice management strategies by discussing diagnostic skills, treatment planning and therapeutic modalities.

An essential resource based on a solid research platform, this book will provide dental clinical professionals with the missing links they seek to diagnose, prevent, manage, restore and rehabilitate the worn dentition more confidently. It will be of value to dentists, dental therapists, dental hygienists, and students in these areas.

KEY FEATURES

ā€¢ Covers all forms of toothwear and dental erosion across all age-groups
ā€¢ Includes discussion of best practice management strategies
ā€¢ Discusses aetiology, diagnosis, prevention and treatment in a clinical context
ā€¢ Contains many full colour clinical illustrations and schematic conceptualisations
ā€¢ Brings together the latest clinical views and research with a wide range of international contributors

Frequently asked questions

Simply head over to the account section in settings and click on ā€œCancel Subscriptionā€ - itā€™s as simple as that. After you cancel, your membership will stay active for the remainder of the time youā€™ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlegoā€™s features. The only differences are the price and subscription period: With the annual plan youā€™ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weā€™ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Toothwear by Farid Khan, William G. Young, Farid Khan, William G. Young in PDF and/or ePUB format, as well as other popular books in Medicine & Dentistry. We have over one million books available in our catalogue for you to explore.

Information

Year
2011
ISBN
9781444341126
Edition
1
Subtopic
Dentistry
1
The multifactorial nature of toothwear
Farid Khan and William G. Young
TOOTHWEAR PROCESSES
Attrition, erosion and abrasion describe wear processes (Fig. 1.1). Attrition involves two-surface (tooth-to-tooth) wear. Erosion, less commonly referred to as corrosion, results from acidic dissolution of mineralised tooth structure. Abrasion on a surface comprises wear from externally applied particles or objects.
When a patient presents with a heavily worn dentition (Fig. 1.2), the clinician considers whether the toothwear processes have involved elements of attrition, erosion or abrasion. Whilst the wear facets identified on the lower anterior teeth suggest attrition, numerous high margins on restorations point to involvement of erosion, removing tooth structure adjacent to these restorations. Demineralisation of tooth structure further predisposes to abrasion as evident in cervical regions, many of which have previously been restored. Since placement of these restorations, toothwear processes have continued. This case highlights that interrelationships exist between toothwear processes which potentiate one another.
Although the processes of attrition, erosion and abrasion can be simulated under laboratory conditions, clinically these processes do not occur independently (Fig. 1.3). The coarse particles of foods in primitive diets potentiated the wear facets (Young 1998) of attrition by abrasion (Fig. 1.3a). Modern diets lack such abrasives; however, oral acids that cause erosion demineralise enamel and dentine, potentiating attrition and abrasion (Figs. 1.3b & c). A recent literature review on erosion noted that dietary acids are considered by many researchers probably to be the most common cause of acid erosion (Bartlett 2009). Exaggerated wear facets are the first sign of erosion-potentiated attrition in young adultsā€™ permanent teeth. Toothbrush and toothpaste combinations are important considerations, particularly in patients in whom dental erosion has also been identified, for abrasiveness becomes potentiated when tooth structure is demineralised. A combination of these two processes can lead to severe toothwear (Fig. 1.4). When used on demineralised tooth structure, abrasion from routine use of standard toothbrushes and toothpaste formulations is significant, whilst in the absence of erosion, it is considered to be minimal (Addy 2005). Attritional facets and cuspal-cupped lesions can be found on the same tooth (Fig. 1.5). This suggests that the wear facet worn by the mesiobuccal cusp of the upper first molar has been potentiated or exaggerated by occlusal erosion that has produced the cuspal-cupped lesions. Moreover, erosion has produced the shallow cervical lesion on the buccal surface of this tooth possibly potentiated by toothbrush abrasion.
Figure 1.1 The processes of attrition, erosion and abrasion: (a) Attrition is wear between two tooth surfaces. (b) Erosion is tooth surface loss from acids. (c) Abrasion is loss of tooth surface from a foreign body.
ch01fig001.eps
Figure 1.2 Three processes of toothwear are reported in this case: (a) Incisal attrition on incisors. (b) Occlusal erosion on premolars and molars and around amalgam restorations. (c) Various cervical regions have been restored previously, with further loss of tooth structure since the time of restoration. (From Young, 2001, with permission of Dentil Pty Ltd.)
ch01fig002.eps
Figure 1.3 Interactions of abrasion, attrition and erosion in toothwear: (a) Acids soften surfaces potentiating attrition. (b) Acids soften surfaces potentiating abrasion. (c) Abrasion from particles harder than enamel and dentine potentiates attritional wear.
ch01fig003.eps
Figure 1.4 Facial surfaces of the central incisors are devoid of enamel in a 31-year-old female gymnast. The dentine is deeply grooved by toothbrush abrasion. The approximal enamel is remarkably intact. Scanning electron microscopy (SEM) (Bar = 1 mm). (From Khan et al., 1999, with permission from the Australian Dental Journal.)
ch01fig004.eps
Figure 1.5 An attritional wear facet (F) on a buccal cusp of a lower first permanent molar. On all cusps are the cupped lesions of erosion not necessarily associated with attrition. A shallow buccal cervical lesion (C1) is also present on this tooth (Bar = 1 mm). (From Young & Khan, 2009, with permission from Erosion Watch Pty Ltd.)
ch01fig005.eps
Figure 1.6 Toothwear is best conceptualised as a combination of erosion, attrition and abrasion.
ch01fig006.eps
These interrelationships between attrition, erosion and abrasion highlight that multifactorial processes create a worn dentition (Fig. 1.6). Each patient has a variation in the involvement of attrition, erosion and abrasion. In many patients, it is predominantly underlying erosion that potentiates the secondary effects of attrition and abrasion. Appreciating that different processes are working concurrently allows the clinician to focus diagnostic, preventive and management strategies on all three aetiologies. Thus, tooth tissue loss will continue if its multifactorial nature is not recognised and addressed.
SALIVA PROTECTION
Saliva is central in counteracting and balancing toothwear processes, and tooth surfaces are protected against toothwear by salivary buffering capacity, salivary pellicle, acid clearance and washing of the dentition (Dawes 2008). The unstimulated flow rate of saliva and salivary buffering capacity have been directly associated with dental erosion (Zero & Lussi 2005). Both mucous and serous saliva protect against attritional wear through lubrication of the teeth and areas of interarch contact, as well as neutralise acids within the oral environment. Saliva also reduces demineralisation by its content of calcium and phosphate (Fig. 1.7).
Figure 1.7 Saliva offers protection against attritional wear (a) through lubrication and (b) by raising the pH through buffering and clearance of acids that produce erosion.
ch01fig007.eps
INTRINSIC AND EXTRINSIC ACIDS
Acids that demineralise teeth are extrinsic dietary or intrinsic, gastric or plaque in origin. Dietary acids most commonly implicated are ascorbic acid (vitamin C), citric acid, sodium citrate and orthophosphoric acid, because these are used as flavours and preservatives in most acidic beverages. So, soft (Johansson et al. 2002), sports (Milosevic 1997) and energy drinks are sources, with other acids in wines. Hydrochloric acid from gastric juice is the usual intrinsic acid implicated in dental erosion and toothwear (Scheutzel 1996). A study examining 19 professional wine tasters found mild-to-severe dental erosion and found the subjects with severe dental erosion also to have had a history of gastritis or reduced salivary flow rate and/or buffering capacity (Wiktorsson et al. 1997).
Figure 1.8 A 24-year-old male patient with a long history of athletic training at a professional level. Acidic beverage rehydration frequently occurred subsequent to intense physical training sessions, at times of dehydration and low salivary protection. This allowed rapid loss of tooth structure to occur. (a) Near exposures of the pulpal tissues are evident on the lingual surfaces of the maxillary anterior teeth. (b) Extensive areas of erosion have notably affected his first molar teeth. (c) Cervical lesions are evident on the maxillary and mandibular buccal surfaces of canine and lateral incisor teeth. (From Young, 2003b, with permission of Dentil Pty Ltd.)
ch01fig008.eps
The case presented in Fig. 1.8 shows the toothwear of an elite athlete, 24 years of age. His lifestyle placed him at risk of developing severe toothwear. His rigorous training regimes reduced the salivary protection of his dentition. Subsequent rehydration with acidic sports drinks at times of dehydration affected his dentition. Acidic beverages and foods are important contributors to erosive toothwear in many individuals (see Chapter 3), given their common availability, and yet the pH alone is insufficient to determine their erosive potential, which is instead influenced by a large range of variables including consumption patterns, adhesion and chelating properties of salivary protection, and swallowing and clearance patterns (Lussi et al. 2004). Frequent episodes of reduced saliva protection and acid drinks resulted in severe loss of enamel and dentine in this young adult, principally from dental erosion. Dental erosion in athletes is a growing concern (Sirimaharaj et al. 2002); however, many children and young adults al...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contributors
  5. Foreword
  6. Chapter 1: The multifactorial nature of toothwear
  7. Chapter 2: Diagnosis and management of toothwear in children
  8. Chapter 3: Childhood diet and dental erosion
  9. Chapter 4: The oral presentation of toothwear in adults
  10. Chapter 5: Salivary protection against toothwear and dental caries
  11. Chapter 6: Dental diagnosis and the oral medicine of toothwear
  12. Chapter 7: Preventive and management strategies against toothwear
  13. Chapter 8: Measurement of severity and progression of toothwear
  14. Chapter 9: Biomaterials
  15. Chapter 10: The role of toothwear in occlusion
  16. Chapter 11: Restoration of the worn dentition
  17. Chapter 12: Rehabilitation of the worn dentition
  18. Index