Science and Hypothesis
eBook - ePub

Science and Hypothesis

Henri Poincaré

Share book
  1. 288 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Science and Hypothesis

Henri Poincaré

Book details
Book preview
Table of contents
Citations

About This Book

Nontechnical essays on hypothesis in physical theory, concept of number, magnitude, force, intuition vs. logic, more. Chapters include `On the Nature of Mathematical Reasoning,` `Mathematical Magnitude and Experiment,` `Non-Euclidean Geometries,` `Space and Geometry,` `Experiment and Geometry,` The Classical Mechanics,` `Energy and Thermo-Dynamics,` `Hypotheses in Physics,` and `The Calculus of Probabilities.`

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Science and Hypothesis an online PDF/ePUB?
Yes, you can access Science and Hypothesis by Henri Poincaré in PDF and/or ePUB format, as well as other popular books in Philosophie & Philosophische Essays. We have over one million books available in our catalogue for you to explore.

Information

Year
2012
ISBN
9780486143484

PART I.

NUMBER AND MAGNITUDE.

CHAPTER I.

ON THE NATURE OF MATHEMATICAL REASONING.

I.

THE very possibility of mathematical science seems an insoluble contradiction. If this science is only deductive in appearance, from whence is derived that perfect rigour which is challenged by none? If, on the contrary, all the propositions which it enunciates may be derived in order by the rules of formal logic, how is it that mathematics is not reduced to a gigantic tautology? The syllogism can teach us nothing essentially new, and if everything must spring from the principle of identity, then everything should be capable of being reduced to that principle. Are we then to admit that the enunciations of all the theorems with which so many volumes are filled, are only indirect ways of saying that A is A?
No doubt we may refer back to axioms which are at the source of all these reasonings. If it is felt that they cannot be reduced to the principle of contradiction, if we decline to see in them any more than experimental facts which have no part or lot in mathematical necessity, there is still one resource left to us: we may class them among à priori synthetic views. But this is no solution of the difficulty—it is merely giving it a name; and even if the nature of the synthetic views had no longer for us any mystery, the contradiction would not have disappeared; it would have only been shirked. Syllogistic reasoning remains incapable of adding anything to the data that are given it; the data are reduced to axioms, and that is all we should find in the conclusions.
No theorem can be new unless a new axiom intervenes in its demonstration; reasoning can only give us immediately evident truths borrowed from direct intuition; it would only be an intermediary parasite. Should we not therefore have reason for asking if the syllogistic apparatus serves only to disguise what we have borrowed?
The contradiction will strike us the more if we open any book on mathematics; on every page the author announces his intention of generalising some proposition already known. Does the mathematical method proceed from the particular to the general, and, if so, how can it be called deductive?
Finally, if the science of number were merely analytical, or could be analytically derived from a few synthetic intuitions, it seems that a sufficiently powerful mind could with a single glance perceive all its truths; nay, one might even hope that some day a language would be invented simple enough for these truths to be made evident to any person of ordinary intelligence.
Even if these consequences are challenged, it must be granted that mathematical reasoning has of itself a kind of creative virtue, and is therefore to be distinguished from the syllogism. The difference must be profound. We shall not, for instance, find the key to the mystery in the frequent use of the rule by which the same uniform operation applied to two equal numbers will give identical results. All these modes of reasoning, whether or not reducible to the syllogism, properly so called, retain the analytical character, and ipso facto, lose their power.

II.

The argument is an old one. Let us see how Leibnitz tried to show that two and two make four. I assume the number one to be defined, and also the operation x + 1—i.e., the adding of unity to a given number x. These definitions, whatever they may be, do not enter into the subsequent reasoning. I next define the numbers 2, 3, 4 by the equalities:—
(1) 1+1=2; (2) 2+1=3; (3) 3+1=4, and in the same way I define the operation x + 2 by the relation; (4) x+2=(x+1)+1.
Given this, we have:—
2+2=(2+1)+1; (def. 4).
(2+1)+1=3+1 (def. 2).
3+1=4 (def. 3).
whence 2+2=4 Q.E.D.
It cannot be denied that this reasoning is purely analytical. But if we ask a mathematician, he will reply: “This is not a demonstration properly so called; it is a verification.” We have confined ourselves to bringing together one or other of two purely conventional definitions, and we have verified their identity; nothing new has been learned. Verification differs from proof precisely because it is analytical, and because it leads to nothing. It leads to nothing because the conclusion is nothing but the premisses translated into another language. A real proof, on the other hand, is fruitful, because the conclusion is in a sense more general than the premisses. The equality 2+2=4 can be verified because it is particular. Each individual enunciation in mathematics may be always verified in the same way. But if mathematics could be reduced to a series of such verifications it would not be a science. A chess-player, for instance, does not create a science by winning a piece. There is no science but the science of the general. It may even be said that the object of the exact sciences is to dispense with these direct verifications.

III.

Let us now see the geometer at work, and try to surprise some of his methods. The task is not without difficulty; it is not enough to open a book at random and to analyse any proof we may come across. First of all, geometry must be excluded, or the question becomes complicated by difficult problems relating to the role of the postulates, the nature and the origin of the idea of space. For analogous reasons we cannot avail ourselves of the infinitesimal calculus. We must seek mathematical thought where it has remained pure—i.e., in Arithmetic. But we still have to choose; in the higher parts of the theory of numbers the primitive mathematical ideas have already undergone so profound an elaboration that it becomes difficult to analyse them.
It is therefore at the beginning of Arithmetic that we must expect to find the explanation we seek; but it happens that it is precisely in the proofs of the most elementary theorems that the authors of classic treatises have displayed the least precision and rigour. We may not impute this to them as a crime; they have obeyed a necessity. Beginners are not prepared for real mathematical rigour; they would see in it nothing but empty, tedious subtleties. It would be waste of time to try to make them more exacting; they have to pass rapidly and without stopping over the road which was trodden slowly by the founders of the science.
Why is so long a preparation necessary to habituate oneself to this perfect rigour, which it would seem should naturally be imposed on all minds? This is a logical and psychological problem which is well worthy of study. But we shall not dwell on it; it is foreign to our subject. All I wish to insist on is, that we shall fail in our purpose unless we reconstruct the proofs of the elementary theorems, and give them, not the rough form in which they are left so as not to weary the beginner, but the form which will satisfy the skilled geometer.

DEFINITION OF ADDITION.

I assume that the operation x+1 has been defined; it consists in adding the number 1 to a given number x. Whatever may be said of this definition, it does not enter into the subsequent reasoning.
We now have to define the operation x+a, which consists in adding the number a to any given number x. Suppose that we have defined the operation x+(a-1); the operation x+a will be defined by the equality: (1) x+a= [x+(a-1)]+1. We shall know what x + a is when we know what x+(a-1) is, and as I have assumed that to start with we know what x+1 is, we can define successively and “by recurrence” the operations x+2, x+3, etc. This definition deserves a moment’s attention; it is of a particular nature which distinguishes it even at this stage from the purely logical definition; the equality (1), in fact, contains an infinite number of distinct definitions, each having only one meaning when we know the meaning of its predecessor.

PROPERTIES OF ADDITION.

Associative.—I say that a+(b+c)=(a+b)+c; in fact, the theorem is true for c=1. It may then be written a+(b+1)=(a+b)+1; which, remembering the difference of notation, is nothing but the equality (1) by which I have just defined addition. Assume the theorem true for c=γ, I say that it will be true for c=γ+1. Let (a+b)+γ=a+(b+γ), it follows that [(a+b)+γ]+1=[a+(b+γ)]+1; or by def. (1)—(a+b) + (γ+1)=a+(b+γ+1)=a+[b+γ+1)], which shows by a series of purely analytical deductions that the theorem is true for true for c=1, we see that it is successively true for c=2, c=3, etc.
Commutative.—(1) I say that a+1=1+a. The theorem is evidently true for a=1; we can verify by purely analytical reasoning that if it is true for a=γ it will be true for a=γ+1.2 Now, it is true for a=1, and therefore is true for a=2, a=3, and so on. This is what is meant by saying that the proof is demonstrated “ by recurrence.”
(2) I say that a+b=b+a. The theorem has just been shown to hold good for b=1, and it may be verified analytically that if it is true for b=β, it will be true for b=β+1. The proposition is thus established by recurrence.

DEFINITION OF MULTIPLICATION.

We shall define multiplication by the equalities: (1) a×1=a. (2) a×b=[a×(b-1)]+a. Both of these include an infinite number of definitions; having defined a×1, it enables us to define in succession a×2, a×3, and so on.

PROPERTIES OF MULTIPLICATION.

Distributive.—I say that (a+b)Xc=(aXc)+ (b×c). We can verify analytically that the theorem is true for c=1; then if it is true for c=y, it will be true for c=y+1. The proposition is then proved by recurrence.
Commutative.—(1) I say that a×1=1×a. The theorem is obvious for a=1. We can verify analytically that if it is true for a=α, it will be true for a=a+1.
(2) I say that a×b=b×a. The theorem has just been proved for b=1. We can verify analytically that if it be true for b=β it will be true for b=β+1.

IV.

This monotonous series of reasonings may now be laid aside; but their very monotony brings vividly to light the process, which is uniform, and is met again at every step. The process is proof by recurrence. We first show that a theorem is true for n=1; we then show that if it is true for n—1 it is true for n, and we conclude that it is true for all integers. We have now seen how it may be used for the proof of the rules of addition and multiplication—that is to say, for the rules of the algebraical calculus. This calculus is an instrument of transformation which lends itself to many more different combinations than the simple syllogism; but it is still a purely analytical instrument, and is incapable of teaching us anything new. If mathematics had no other instrument, it would immediately be arrested in its development; but it has recourse anew to the same process—i.e., to reasoning by recurrence, and it can continue its forward march. Then if we look carefully, we find this mode of reasoning at every step, either under the simple form which we have just given to it, or under a more or less modified form. It is therefore mathematical reasoning par excellence, and we must examine it closer.

V.

The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinite number of syllogisms. We shall see this more clearly if we enunciate the syllogisms one after another. They follow one another, if one may use the expression, in a cascade. The following are the hypothetical syllogisms:—The theorem is true of the number 1. Now, if it is true of 1, it is true of 2; therefore it is true of 2. Now, if it is true of 2, it is true of 3; hence it is true of 3, and so on. We see that the conclusion of each syllogism serves as the minor of its successor. Further, the majors of all our syllogisms may be reduced to a single form. If the theorem is true of n – 1, it is true of n.
We see, then, that in reasoning by recurrence we confine ourselves to the enunciation of the minor of the first syllogism, and the general formula which contains as particular cases all the majors. This unending series of syllogisms is thus reduced to a phrase of a few lines.
It is now easy to understand why every particular consequence of a theorem may, as I have above explained, be verified by purely analytical processes. If, instead of proving that our theorem is true for all numbers, we only wish to show that it is true for the number 6 for instance, it will be enough to establish the first five syllogisms in our cascade. We shall require 9 if we wish to prove it for the number 10; for a greater number we shall require more still; but however great the number may be we shall always reach it, and the analytical verification will always be possible. But however far we went we should never reach the general theorem applicable to all numbers, which alone is the object of science. To reach it we should require an infinite number of syllogisms, and we should have to cross an abyss which the patience of the analyst, restricted to the resources of formal logic, will never succeed in crossing.
I asked at the outset why we cannot conceive of a mind powerful enough to see at a glance the whole body of mathematical truth. The answer is now easy. A chess-player can combine for four or five moves ahead; but, however extraordinary a player he may be, he cannot prepare for more than a finite number of moves. If he applies his faculties to Arithmetic, he cannot conceive its general truths by direct intuition alone; to prove even the smallest theorem he must use reasoning by recurrence, for that is the only instrument which enables us to pass from the finite to the infinite. This instrument is always useful, for it enables us to leap over as many stages as we wish; it frees us from the necessity of long, tedious, and monotonous verifications which would rapidly become impracticable. Then when we take in hand the general theorem it becomes indispensable, for otherwise we should ever be approaching the analytical verification without ever actually reaching it. In this domain of Arithmetic we may think ourselves very far from the infinitesimal analysis, but the idea of mathematical infinity is already playing a preponderating part, and without it there would be no science at all, because there would be nothing general.

VI.

The views upon which reasoning by recurrence is based may be exhibited in other forms; we may say, for instance, that in any finite collection of different integers there is always one which is smaller than any other. We may readily pass ...

Table of contents