Rock Mechanics and Rock Engineering
eBook - ePub

Rock Mechanics and Rock Engineering

Volume 1: Fundamentals of Rock Mechanics

  1. 380 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Rock Mechanics and Rock Engineering

Volume 1: Fundamentals of Rock Mechanics

Book details
Book preview
Table of contents
Citations

About This Book

The two-volume set Rock Mechanics and Rock Engineering is concerned with the application of the principles of mechanics to physical, chemical and electro-magnetic processes in the upper-most layers of the earth and the design and construction of the rock structures associated with civil engineering and exploitation or extraction of natural resources in mining and petroleum engineering.
Volume 1, Fundamentals of Rock Mechanics, discusses rock-constituting elements, discontinuities and their behavior under various physical and chemical actions in nature. The governing equations together with constitutive laws and experimental techniques and the solution techniques are explained and some examples of applications are given. A number of chapters are devoted to possible new directions in rock mechanics. Rock Mechanics and Rock Engineering is intended to be a fundamental resource for younger generations and newcomers and a reference book for experts specialized in Rock Mechanics and Rock Engineering and associated with the fields of mining, civil and petroleum engineering, engineering geology, and/or specialized in Geophysics and concerned with earthquake science and engineering.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Rock Mechanics and Rock Engineering by Ömer Aydan in PDF and/or ePUB format, as well as other popular books in Technologie et ingénierie & Ingénierie minière. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2019
ISBN
9781000732184

Chapter 1
Introduction and history of rock mechanics and rock engineering

1.1 Early traces of rock mechanics and rock engineering

The early traces of rock mechanics and rock engineering may be associated with archeological remains left by ancient peoples, such as Hattis, Sumerians, Egyptians, Hittites, Persians, Romans, and Native Americans. The quarries, open-pit mines, castles, underground quarries, semiunderground or underground cities in Anatolia (Anadolu) and underground tombs of Egyptians near Luxor, as well as pyramids, are all well preserved examples of rock engineering structures of the past, even though they did not have the excavation tools of modern times (Aydan, 2008, 2014). In Anadolu (Anatolia), there are traces of open-pit mining dated to 9000 years ago and of underground mines dated to 5000 years ago (Kaptan, 1992; Yener, 1997).
Figure 1.1 Monuments in Central Asia and Anatolia
Figure 1.1 Monuments in Central Asia and Anatolia
Humankind has constructed underground or semiunderground openings in soft rocks in the past. However, one can also found such structures excavated in limestone in the form of irrigation tunnels. Hard stones (i.e. flints, diorite, obsidian) were used initially, and later, workers started to use metallic tools after gaining the knowledge of extracting metals from ores. Given the 9000-year-old archeological mining and metallurgic traces found in Anatolia, it is likely that the use of metallic tools could be as old as 9000 years (Hatti era). In view of recent findings in Göbekli Tepe in Şanlıurfa, the quarrying of limestone in the region extends at least 11000 BP (Fig. 1.1). It is estimated that Harran City was established at least 5000 years ago, during the period of the Sumerians, who came from Central Asia to Mesopotamia about 7000 years ago and governed the area until BCE 2270. Sumerians were the pioneers in all aspects of the modern sciences, engineering, technology, culture and religion of humankind, including cuneiform script (Kramer, 1956).
One can find also some earlier underground quarries in Anatolia and Thebes (Kulaksiz and Aydan, 2010; Kumsar et al., 2003; Aydan and Ulusay, 2003, 2013; Aydan et al., 2008a, 2008b; Aydan and Geniş, 2004; Hamada et al., 2014; Kumsar and Aydan, 2008; Tokashiki et al., 2008). At the Amenophis III Quarry at Qurna of the Thebes region of Egypt, marble mining started probably 3350–3500 years ago. The Bazda Quarry at Harran, Urfa region of Turkey, probably opened 4000 years ago by the Sumerians. The Bazda underground marble mine quarry is the oldest known underground quarry mine in Turkey (Fig. 1.2).
Pyramids made of huge rock blocks to achieve structural stability for thousands of years under both static and dynamic loading conditions, particularly those in Egypt, are well-known worldwide. However, some pyramids have been recently unearthed in Peru, Mexico, Bosnia and present China. Pyramids near Xianyang in present China were constructed by Proto-Turks (Proto-Uygurs) about 3000 BCE, which makes them the oldest pyramids in the world and confirms the hypothesis that pyramids in Egypt were built by people who migrated from Central Asia due to climate change and dried inland seas such as Taklamakan (in Uygur Turkish, is Döklemegen means “the point of no return”) and Gobi Desert. Besides the good mechanical interlocking of rock blocks, there are caverns within these pyramids. The roofs of these caverns consist of beams of hard rock (mainly granite) with blocks in the sidewalls put together to form inverted V-shaped or trapeze-shaped arches (like Sumerian arches). Of course, the beams were dimensioned in a way that they can resist tensile stresses induced by bending due to surcharge loads for thousands of years.
Figure 1.2 Remnants of open-pit and underground quarries during the early stages of excavations: (a) pathway leading to the quarries, (b) initial underground quarries
Figure 1.2 Remnants of open-pit and underground quarries during the early stages of excavations: (a) pathway leading to the quarries, (b) initial underground quarries
Friction law, strength of rocks in tension and compressions, was undoubtedly known to ancestral civilizations (i.e. Sumerians, Turanians, Anatolians, Egyptians, Indians, Chinese, Peruvians, Maya, Aztecs, Persians and Roman) and measured by them precisely. The very advanced measurement systems developed by Sumerians have very likely direct connections to modern measurement systems. It is simply our disregard and ignorance of their knowledge and level of their advancement that lead us to quote, for example, Guillaume Amonton and Leonardo da Vinci as the pioneers of modern testing and measurements techniques. There is a need to initiate a working group from various countries on the history of testing and measurement techniques relevant to rock mechanics and rock engineering and to recognize the actual pioneers with due respect.

1.2 Modern development of rock mechanics and rock engineering

The principles of modern rock mechanics and rock engineering are associated with Talobre (1957), Terzaghi (1946) and Stini (1950), both from Austria (Müller, 1963). Their works were followed by Müller of Karlsruhe University in Germany, Talobre of Électricité de France in France, and Rocha of the Portuguese National Laboratory for Civil Engineering (LNEC), which is still home to the ISRM office. The book published by Jaeger and Cook (1979) was the first theoretical publication in rock mechanics. The books related to rock engineering by E. Hoek and his colleagues (Hoek and Bray, 1977; Hoek and Brown, 1980) at the Imperial College were other milestones in the advancement of rock mechanics and rock engineering.
The International Society for Rock Mechanics (ISRM) has defined rock mechanics as the theoretical and applied science of the mechanical behavior of rock and rock masses; it is that branch of mechanics concerned with the response of rock and rock masses to the force fields of their physical environment. Rock mechanics itself forms part of the broader subject of geomechanics, which is concerned with the mechanical responses of all geological materials, including soils. Rock mechanics is concerned with the application of the principles of engineering mechanics to the design of the rock structures generated by mining, civil and petroleum activity, e.g. tunnels, mining shafts, underground excavations, open pit mines. While the acronym remains the same, the ISRM has changed its name to the International Society for Rock Mechanics and Rock Engineering.
The International Society for Rock Mechanics (ISRM) was founded in Salzburg in 1962 as a result of the enlargement of the so-called Salzburger Kreis. Its foundation is mainly owed to Professor Leopold Müller who acted as president of the Society till September 1966. When one looks at the content of the proceedings of the first Congress, the spectrum of rock mechanics and rock engineering (RMRE) is very wide compared to that these days. In other words, the greater emphasis given to the applications in civil and mining engineering and the relation of rock mechanics with earth science or geoscience is almost nonexistent in the last three decades. The recent decrease of civil engineering constructions and mining activities due to economic reasons and environmental concerns in many countries resulted in the decrease of the interest of academia and the engineering community in RMRE. The overemphasis on nuclear waste disposal problems, which are only relevant to a limited number of countries worldwide, causes further decreases in interest in academia and the engineering community in RMRE.

1.3 Goals and content of this book

Rock is the main constituent of the crust of the Earth, and its behavior is the most complex one among all materials in the geosphere that humankind deals with. Furthermore, it contains various discontinuities, which make the thermo-hydro-mechanical mechanical behavior of rocks more complex. These simply require a higher level of knowledge and intelligence in the RMRE community.
Rock mechanics is concerned with the theoretical and applied science of the mechanical behavior of rock and rock masses, and it is one of the branches of mechanics concerned with the response of rock and rock masses to their physical-chemical environment. Rock mechanics is concerned with the application of the principles of mechanics to physical, chemical and electromagnetic processes in the uppermost part of the Earth and the design of the rock structures associated with mining, civil and petroleum engineering. This book is intended to be a fundamental book for younger generations and newcomers, as well as a reference book for experts specialized in rock mechanics.
The practitioners and experts of rock mechanics should have a profound knowledge of rock-constituting elements, the petrography of rocks, discontinuities and their causes to understand their behavior under various physical and chemical actions in nature. Several chapters are devoted to this issue. First, common rock-forming minerals, rocks, discontinuities and rock mass are explained, and fundamental definitions and their measurement techniques are presented. The governing equations, constitutive laws and experimental techniques are described. The fundamentals of techniques for solving the resulting partial differential equations of rock mechanics are explained, and some specific examples of applications are given. Second, the techniques for the characterization of rock masses, experimental techniques in situ, and the evaluation of the stress state in rock mass using direct and indirect techniques are described, and several specific examples of applications are given. Other chapters are devoted to ice mechanics and extraterrestrial rock mechanics as possible new directions of rock mechanics.
This volume provides the fundamentals as well as many recent and relevant topics for younger generations, newcomers and experts specialized in rock mechanics, with some specific goals such as:
  1. Understanding the basic components and features of rocks, discontinuities and rock masses and their physical characterization. This is a quite important aspect as some practitioners of rock mechanics lack this knowledge.
  2. The fundamental laws of mechanics for rock and rock masses, constitutive models and associated experimental techniques in laboratory and in situ, numerical techniques. Various physical modeling procedures used in the field of rock mechanics are described to help young generations as well as newcomers understand the fundamentals of rock mechanics.
  3. The evaluation of rock masses in nature. Many empirical, experimental and geophysical techniques are developed for this purpose of understanding this very complete subject. These techniques are described, and their applications in the practice are presented. Another important aspect in the design and construction of rock engineering structures is the evaluation of in-situ stress state before their construction. This aspect is presented from a broad perspective, and several direct and indirect techniques are explained. Rock excavations techniques are described, and some practical examples are given.
  4. The exploration and exploitation of natural resources under extreme climatic conditions on the Earth, Moon, planets, asteroids. Therefore, ice mechanics and extraterrestrial rock mechanics will become important fields of applications of rock mechanics. Current knowledge, findings and techniques are briefly described, and possible future aspects are discussed.

References

Aydan, Ö. (2008) New directions of rock mechanics and rock engineering: Geomechanics and Geoengineering. 5th Asian Rock Mechanics Symposium (ARMS5), Tehran. pp. 3–21.
Aydan, Ö. (2014) Future advancement of rock mechanics and rock engineering (RMRE). ROCKMEC’2014-XIth Regional Rock Mechanics Symposium, Afyonkarahisar, Turkey. pp. 27–50.
Aydan, Ö. & Geniş, M. (2004) Surrounding rock properties and openings stability of rock tomb of Amenhotep III (Egypt). ISRM Regional Rock Mechanics Symposium, Sivas. pp. 191–202.
Aydan, Ö. & Ulusay, R. (2003) Geotechnical and geoenvironmental characteristics of man-made underground structures in Cappadocia, Turkey. Engineering Geology, 69, 245–272.
Aydan, Ö. & Ulusay, R. (2013) Geomechanical evaluation of Derinkuyu Antique Underground City and its implications in geoengineering. In: Rock Mechanics and Rock Engineering. Springer Vienna. pp. 731–754.
Aydan, Ö., Tano, H., Geniş, M., Sakamoto, I. & Hamada, M. (2008a) Environmental and rock mechanics investigations for the restoration of the tomb of Amenophis III. Japan-Egypt Joint Symposium New Horizons in Geotechnical and Geoenvironmental Engineering, Tanta, Egypt. pp. 151–162.
Aydan, Ö., Tano, H., Ulusay, R. & Jeong, G.C. (2008b) Deterioration of historical structures in Cappadocia (Turkey) and in Thebes (Egypt) in soft rocks and possible remedial measures. 2008 International Symposium on Conservation Science for Cultural Heritage, Seoul. pp. 37–41.
Aydan, Ö., Ohta, Y., Daido, M., Kumsar, H., Genis, M., Tokashiki, N., Ito, T. & Amini, M. (2011) Chapter 15: Earthquakes as a rock dynamic problem ...

Table of contents

  1. Cover
  2. Half Title
  3. Title
  4. Copyright
  5. Contents
  6. Preface
  7. Author biography
  8. 1 Introduction and history of rock mechanics and rock engineering
  9. 2 Minerals, rocks, discontinuities and rock mass
  10. 3 Fundamental definitions and measurement techniques
  11. 4 Fundamental governing equations
  12. 5 Constitutive laws
  13. 6 Laboratory and in-situ tests
  14. 7 In-situ stress estimation, measurement and inference methods
  15. 8 Analytical methods
  16. 9 Numerical methods
  17. 10 Ice mechanics and glacial flow
  18. 11 Extraterrestrial rock mechanics and rock engineering
  19. Appendices
  20. Index