Contents
About the Author
Preface and Acknowledgements
Introduction
1. Kinetic Theory of Gases
1.1 Basic Concepts
1.1.1 Pressure
1.1.2 Equation of State
1.1.3 Gas Density
1.1.4 Avogadro’s Law
1.1.5 Molecular Motion and Energy
1.1.6 Molecular Impingement Rate
1.1.7 Mean Free Path
1.1.8 Heat Transfer
1.1.8.1 Heat Transfer by Radiation
1.1.8.2 Heat Transfer by Conduction at Low Pressure
1.1.8.3 Convection
1.1.9 Thermal Transpiration
2. Flow of Gas and Conductance
2.1 Types of Gas Flow
2.1.1 Viscous Flow
2.1.2 Molecular Flow
2.2 Conductance
2.2.1 Conductance of an Orifice in Molecular Flow Region
2.2.2 Conductance in the Viscous Flow Region Conductance of an Orifice
2.2.3 Conductance in the Transition Flow Region
2.3 Basic Pumping Equation
2.4 Standard Leaks
2.5 Rise of Pressure in a Sealed-off Vacuum Device
3. Surface Phenomena
3.1 Neutrals-Surface Interactions
3.1.1 Diffusion of Gases
3.1.2 Permeation
3.1.3 Physical and Chemical Adsorption
3.1.3.1 Monolayer
3.1.3.2 Sticking probability
3.1.3.3 Adsorption Isotherms and Surface Area
3.1.4 Desorption
3.1.4.1 Determination of Activated Energy of Desorption
3.1.4.2 Photon-Electron and Ion-Induced Desorption
3.1.5 Thin Films Deposition on Surfaces
3.1.6 Molecular Beam Epitaxy (MBE)
3.1.7 Surface Ionization
3.2 Interaction of Charged Particles, Radiation and Heat with Solid Surfaces
3.2.1 Ion-Surface Interactions
3.2.1.1 Scattering of Positive Ions
3.2.1.2 Secondary Electron Emission by Ion Surface Interaction
3.2.1.3 Entrapment of Injected Ions
3.2.1.4 Sputtering
3.2.1.5 Ion Beam Implantation
3.2.1.6 Ion Beam Deposition/Ion Plating
3.2.2 Electron-surface interactions
3.2.2.1 Secondary Electron Emission by Electrons
3.2.2.2 Auger Electron Emission
3.2.2.3 X-ray Emission
3.2.2.4 Interaction of High-Energy Electrons with Surface
3.2.3 Photon-surface interactions
3.2.3.1 Photoelectric Emission
3.2.3.2 X-Ray Photoelectron Emission
3.2.4 Electric Field-Surface Interaction
3.2.4.1 Field Emission
3.2.5 Thermionic Emission
3.2.6 Emission From Contact Surfaces in Vacuum Arcs
3.2.7 Evaporation−Sublimation−Vapour Pressure
3.2.8 Vacuum Evaporation
4. Interaction of Neutrals, Charged Particles and Radiation with Gases in Vacuum
4.1 Disassociation, Excitation and Ionization
4.1.1 Mean Free Path of Electrons and Ions
4.1.2 Ionization Potential and Ionization Efficiency/Cross Section
4.1.3 Positive Ion-Impact Ionization
4.1.4 Ionization by Photons and Thermal Ionization
4.1.5 Deionization
4.2 Electrical Breakdown in Vacuum
4.2.1 Gas Breakdown
4.2.2 Glow Discharge
4.2.3 Vacuum Breakdown
4.3 Plasma
5. Measurement of Pressure
5.1 Mechanical Gauges
5.1.1 Manometers
5.1.2 McLeod Gauge
5.1.3 Diaphragm gauges
5.1.4 Knudsen Gauge
5.1.5 Bourdon Gauge
5.2 Thermal Conductivity-based Gauges
5.3 Ionization Gauges
5.3.1 Hot Cathode Ionization Gauges
5.3.1.1 Schulz and Phelps Gauge
5.3.1.2 Conventional Hot Cathode Ionization Gauge
5.3.1.3 Bayard-Alpert Gauge
5.3.1.4 Modulated Bayard−Alpert Gauge
5.3.1.5 Extractor Gauge
5.3.1.6 Magnetron Gauge
5.3.1.7 Helmer Gauge
5.3.1.8 Helmer Gauge-180o Ion Deflection
5.3.1.9 Axial Symmetric Transmission Gauge
5.3.1.10 Orbitron Gauge
5.3.2 Cold Cathode Ionization Gauges
5.3.2.1 Penning gauge
5.3.2.2 Magnetron and Inverted Magnetron Gauges
5.4 Partial Pressure Gauges
5.4.1 Magnetic Sector Mass Spectrometer
5.4.2 Omegatron
5.4.3 Quadrupole Mass Analyzer
5.4.4 Time-of-Flight (TOF) Mass Analyzer
5.4.5 Detectors
5.4.6 General Discussion on Residual Gas Analyzers
6. Vacuum Pumps
6.1 Positive Displacement Pumps
6.1.1 Water-Ring Pump
6.1.2 Rotary Vane Pump and Rotary Piston Pump
6.1.3 Turbo-molecular Pump
6.1.4 Roots Pump
6.1.5 Diaphragm Pump
6.1.6 Screw, Scroll and Claw Pumps
6.1.7 Diffusion Pump
6.1.8 Vapour Booster Pump
6.2 Pumps Using Conversion of Gas into Solid Phase
6.2.1 Getter Pumps
6.2.1.1 Bulk Getters
6.2.1.2 Flash and Evaporable Getters
6.2.2 Getter-Ion Pump
6.2.3 Sputter-Ion Pump
6.2.3.1 Normal Diode Pump
6.2.3.2 Stabilized Diode Pumps
6.2.3.3 Triode Pump
6.2.3.4 Integrated Linear Pumps
6.2.3.5 Pressur...