The Art Of Probability
eBook - ePub

The Art Of Probability

  1. 364 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

The Art Of Probability

Book details
Book preview
Table of contents
Citations

About This Book

Offering accessible and nuanced coverage, Richard W. Hamming discusses theories of probability with unique clarity and depth. Topics covered include the basic philosophical assumptions, the nature of stochastic methods, and Shannon entropy. One of the best introductions to the topic, The Art of Probability is filled with unique insights and tricks worth knowing.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access The Art Of Probability by Richard W. Hamming in PDF and/or ePUB format, as well as other popular books in Mathematics & Mathematics General. We have over one million books available in our catalogue for you to explore.

Information

Publisher
CRC Press
Year
2018
ISBN
9780429972584
Edition
1
1
Probability
“Probability is too important to be left to the experts.”
1.1 Introduction
Who has not watched the toss of a coin, the roll of dice, or the draw of a card from a well shuffled deck? In each case, although the initial conditions appear to be much the same, the specific outcome is not knowable. These situations, and many equivalent ones, occur constantly in our society, and we need a theory to enable us to deal with them on a rational, effective basis. This theory is known as probability theory and is very widely applied in our society—in science, in engineering, and in government, as well as in sociology, medicine, politics, ecology, and economics.
How can there be laws of probability? Is it not a contradiction? Laws imply regularity, while probable events imply irregularity. We shall see that many times amid apparent irregularity some regularity can be found, and furthermore this limited regularity often has significant consequences.
How is it that from initial ignorance we can later deduce knowledge? How can it be that although we state that we know nothing about a single toss of a coin yet we make definite statements about the result of many tosses, results that are often closely realized in practice?
Probability theory provides a way, indeed a style, of thinking about such problems and situations. The classical theory has proved to be very useful even in domains that are far removed from gambling (which is where it arose and is still, probably, the best initial approach). This style of thinking is an art and is not easy to master; both the historical evidence based on its late development, and the experience of current teaching, show that much careful thinking on the student’s part is necessary before probability becomes a mental habit. The sophisticated approach of beginning with abstract postulates is favored by mathematicians who are interested in covering as rapidly as possible the material and techniques that have been developed in the past. This is not an effective way of teaching the understanding and the use of probability in new situations, though it clearly accelerates the formal manipulation of the symbols (see the quotation at the top of the Preface). We adopt the slow, cautious approach of carefully introducing the assumptions of the models, and then examining them, together with some of their consequences, before plunging into the formal development of the corresponding theory. We also show the relationship between the various models of probability that are of use in practice; there is not a single model of probability, but many and of differing reliabilities.
Mathematics is not just a collection of results, often called theorems; it is a style of thinking. Computing is also basically a style of thinking. Similarly, probability is a style of thinking. And each field is different from the others. For example, I doubt that mathematics can be reduced to button pushing on a computer and still retain its style of thinking. Similarly, I doubt that the theory of probability can be reduced to either mathematics or computing, though there are people who claim to have done so.
In normal life we use the word “probable” in many different ways. We speak of the probability of a head turning up on the toss of a coin, the probability that the next item coming down a production line will be faulty, the probability that it will rain tomorrow, the probability that someone is telling a lie, the probability of dying from some specific disease, and even the probability that some theory, say evolution, special relativity, or the “big bang,” is correct.
In science (and engineering) we also use probability in many ways. In its early days science assumed there was an exact measurement of something, but there was also some small amount of “noise” which contaminated the signal and prevented us from getting the exact measurement. The noise was modeled by probability. We now have theories, such as information theory and coding theory, which assume from the beginning that there is an irreducible noise in the system. These theories are designed to take account of the noise rather than to initially avoid it and then later, at the last moment, graft on noise. And there are some theories, such as the Copenhagen interpretation of quantum mechanics, which say that probability lies at the foundations of physics, that it is basic to the very nature of the world.
Thus there are many different kinds of probability, and any attempt to give only one model of probabilit...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. References
  8. Chapter 1 Probability
  9. Chapter 2 Some Mathematical Tools
  10. Chapter 3 Methods for Solving Problems
  11. Chapter 4 Countably Infinite Sample Spaces
  12. Chapter 5 Continuous Sample Spaces
  13. Chapter 6 Uniform Probability Assignments
  14. Chapter 7 Maximum Entropy
  15. Chapter 8 Models of Probability
  16. Chapter 9 Some Limit Theorems
  17. Chapter 10 An Essay On Simulation
  18. Index