Quantum Implications
eBook - ePub

Quantum Implications

Essays in Honour of David Bohm

  1. 464 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Quantum Implications

Essays in Honour of David Bohm

Book details
Book preview
Table of contents
Citations

About This Book

David Bohm is one of the foremost scientific thinkers of today and one of the most distinguished scientists of his generation. His challenge to the conventional understanding of quantum theory has led scientists to reexamine what it is they are going and his ideas have been an inspiration across a wide range of disciplines. Quantum Implications is a collection of original contributions by many of the world' s leading scholars and is dedicated to David Bohm, his work and the issues raised by his ideas.
The contributors range across physics, philosophy, biology, art, psychology, and include some of the most distinguished scientists of the day. There is an excellent introduction by the editors, putting Bohm's work in context and setting right some of the misconceptions that have persisted about the work of David Bohm

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Quantum Implications by Basil Hiley, F. David Peat, Basil Hiley, F. David Peat in PDF and/or ePUB format, as well as other popular books in Philosophy & Philosophy History & Theory. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2012
ISBN
9781134914166
1
General Introduction: The Development of David Bohm’s Ideas from the Plasma to the Implicate Order
B. J. Hiley and F. David Peat
David Bohm was born in Wilkes-Barre, Pennsylvania, in 1917. His father ran a successful furniture business, making his way to the USA from what was then Austria-Hungary. There appears to be no physics whatsoever in the family background. Bohm, himself, became interested in science at an early age, being urged on by a fascination of finding out how things worked. By the age of eight he had already been introduced to science fiction. This fired his imagination and generated in him a deep interest in real science. But it was the nature of the real world that fascinated him most. He recalls the profound effect that a book on astronomy had on him in those formative years. He was struck by the vast order and regularity of the universe. This impressed him so much that he began to devote a great deal of time to science.
Needless to say, his father became somewhat concerned about the boy’s future. Being a successful businessman, he could not imagine how anyone could make a living out of ‘scientism’ as he insisted on calling it. Young David took this as a challenge and using his earlier interest in redesigning mechanical devices he decided to try to make money out of inventing. He was rather proud of one invention in particular: namely, a ‘dropless pitcher’. (This ingenious item had nothing at all to do with that great American sporting pastime, baseball. It was a jug or teapot that did not drip!) His principal concern now became how to make this design pay. After almost giving up in despair, he came across an advertisement in a popular science magazine offering, for the sum of $5, advice on how to exploit financially a good invention. Off went the $5 and back came some advice on how to obtain a patent. But that, of course, would cost a few hundred dollars! Would it be worth it? The answer (apparently, included in the $5!) was to do a door-to-door survey to test market demand! It was at this point in his life that he determined that he would become a theoretical physicist.
As he began to study physics seriously, he was repeatedly struck by the interconnectedness of what, at a superficial glance, seemed to be totally unrelated phenomena. As he delved deeper into the substructure of matter and its movement, this characteristic of a rich and highly interconnected substructure became more and more apparent. Furthermore, as Bohm saw it, these deeper structures seemed to possess properties which did not reflect the way physicists were talking about the behaviour of matter. In quantum mechanics, for example, it seemed that this interconnectedness was vital, yet the usual presentation of the subject seemed to minimise this aspect of the phenomena.
In Bohm’s original perception, this notion of interconnectedness was rather vague and ill-defined but with its continual reappearance in different forms, the notion slowly took shape, ultimately leading to a very radical and novel way of looking at reality. This view eventually crystallised into what he now terms the implicate order. But much was to happen before that idea eventually became clear.
The first formal indication of Bohm’s departure from orthodoxy can be traced to his reformulation of quantum mechanics published in Physical Review in 1952.1 But the ideas that lay behind that formulation seem to many to be totally against the spirit of his later work on the implicate order, so much so that they find it hard to see any connection at all. It is true that those papers were more intent on demonstrating that there was another logically coherent interpretation of the quantum mechanical formalism, other than the usual one. But it is the ideas implicit in this reformulation that have connections with the notion of the implicate order. Since there has been some interest in this connection, we have asked David to write a short article outlining what he sees as the essential relationship between the two.2
We would like here to present an overall sketch of the relevant background in which Bohm’s ideas took shape so that the reader can appreciate the significance of the various developments in a broader context. This will also enable us to relate the various contributions to this book to the same background and so see where they fit in. By doing this we hope the book will become more than a collection of isolated contributions.
Bohm’s interest in the fundamental questions of physics started at high school. Even at that early stage he was beginning to ask how the theories of physics enable one to build up an understanding of reality. At college he soon quickly became fascinated with quantum mechanics and relativity as he began to study these subjects in depth for the first time.
After graduating he began his research project under the supervision of Robert Oppenheimer. His dissertation topic involved a theoretical study of neutron-proton scattering. Yet even while working on this technical problem, he kept up his interests in fundamentals, always probing deeper into quantum theory and relativity. He remembers his long discussions with Joseph Weinberg, who had made a study of Bohr’s point of view. During that period he admits to becoming a supporter of Bohr’s position.
Before receiving his doctorate in 1943 from Berkeley, he moved to the Radiation Laboratory where he worked on problems connected with the later phases of the Manhattan Project. He was involved in a theoretical study of the ionisation of uranium fluoride in an electric arc which formed part of the broader study of the problems involved in the separation of 235U from 238U. Thus began his interest in plasma physics, to which he made some outstanding contributions.
Although much of this work was basically involved in technical problems, Bohm could not help noticing the philosophical implications. The individual particles in the plasma were highly correlated and behaved like an organic whole rather than a mechanistic system. The plasma constantly regenerated itself and surrounded all impurities with a sheath so as to isolate them completely. To understand in more detail how the plasma functioned, it was necessary to study the relation between the individual and the collective modes of behaviour. It was here that he introduced the idea of collective co-ordinates and developed a general way of handling plasmas.
When he took up the post of assistant professor at Princeton University he extended his earlier ideas to study the behaviour of electrons in metals, where quantum mechanics played an essential role. It was his innovative work in this area that established David Bohm’s reputation as a theoretical physicist.
Neither of the editors knew Bohm in those days, but fortunately Eugene Gross, who was one of Bohm’s first graduate students, has given a personal sketch of Bohm’s thinking in the period he spent at Princeton. This is presented in the introduction to his article on ‘Collective variables in elementary quantum mechanics’ which appears in this volume.3 We are particularly grateful for his contribution and find that the final paragraph to his introduction captures the feeling that many of us, students and colleagues, felt towards David Bohm: a totally unselfish man who shares his latest thoughts on many topics with his colleagues and students alike. This enthusiasm for the search for order in nature continues unabated today.
The main part of Gross’s contribution is an illustration of how collective co-ordinates can provide a useful way of understanding the behaviour of different systems. He takes as examples the atom-molecule transition, the electron interacting with two lattice oscillators and ends with some remarks concerning the polaron problem. The following article is by another of Bohm’s graduate students, David Pines.4 It is a masterful review of some of the basic ideas involved in the development of plasma physics. He also outlines the role played by Bohm in developing the concepts needed to deal with the problems, and touches on the application of the random phase approximation and its use in liquid helium (4He).
While still at Princeton, Bohm was asked to give a course of lectures on quantum mechanics to undergraduates and was faced with the task of presenting a clear account of the subject that had fascinated him for some time. Here was a theory that had emerged after a long struggle by many physicists to account correctly for a wide range of experimental results, which the classical theory could not even begin to explain. But the conceptual structure of this theory was very different from that of the classical theory. It implied a radical change in our outlook on reality. But precisely what were the nature of these changes did not yet seem very clear. The majority view was (and still is) that the precise nature of the conceptual changes are not important. All that was needed was to work with the self-consistent mathematical formalism, which, in some mysterious way, correctly predicts the numerical results of actual experiments.
After lecturing on the subject for three years, Bohm thought that this was not a satisfactory position to adopt so he decided to try to get a better understanding of the subject by writing a definitive textbook in which the physical aspects of the mathematics would be emphasised. Part of the task would involve clarifying Bohr’s interpretation of the theory by drawing, to some extent, on Bohr’s book Atomic Theory and the Description of Nature.5
It was while writing his book that he came into conflict with what eventually became known as McCarthyism. A year or so after arriving at Princeton he was called to appear before the Un-American Activities Committee, a committee of the House of Representatives. He was asked to testify against colleagues and associates. After taking legal advice he decided to plead the Fifth Amendment. A year or so later, while he was in the middle of his book, his plea was rejected and he was indicted for contempt of Congress. While awaiting trial, the Supreme Court ruled that no one should be forced to testify if the testimony is self-incriminating, provided no crime had been committed. Since no crime had been committed the indictment against Bohm was dropped.
During this period the University advised Bohm to stay away, one of the few benefits to emerge from this whole sordid affair. During his enforced isolation he was able to complete the book far sooner than he had anticipated. After that, however, with his contract at Princeton expired, he was unable to obtain a job in the USA and was advised by Oppenheimer to leave the country before the full force of McCarthyism took effect. Fortunately he had some friends in Brazil who were able to offer him a professorship in the University in São Paulo. He held this post from 1951 to 1955.
The textbook Quantum Theory was first published by Prentice-Hall in 1951 and is still in print today. It is generally regarded as one of the best textbooks of its day. Apart from a clear presentation of the main physical ideas lying behind the formalism, the book has the additional merit of discussing some of the more difficult aspects of the theory usually omitted from modern texts. For example it contains sections on the approach to the classical limit, the measurement problem and the Einstein, Podolsky, Rosen (EPR) paradox. The latter was of particular importance since it reformulated the EPR example in terms of correlated spin one-half systems. This discussion not only clarified the essential issues raised in the debate but also led to the sug...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Contents
  6. 1. General introduction: The development of David Bohm’s ideas from the plasma to the implicate order
  7. 2. Hidden variables and the implicate order
  8. 3. Collective variables in elementary quantum mechanics
  9. 4. The collective description of particle interactions: from plasmas to the helium liquids
  10. 5. Reflections on the quantum measurement paradox
  11. 6. Quantum physics and conscious thought
  12. 7. Macroscopic quantum objects
  13. 8. Meaning and being in contemporary physics
  14. 9. Causal particle trajectories and the interpretation of quantum mechanics
  15. 10. Irreversibility, stochasticity and non-locality in classical dynamics
  16. 11. The issue of retrodiction in Bohm’s theory
  17. 12. Beables for quantum field theory
  18. 13. Negative probability
  19. 14. Gentle quantum events as the source of explicate order
  20. 15. Light as foundation of being
  21. 16. The automorphism group of C4
  22. 17. Some spinor implications unfolded
  23. 18. All is flux
  24. 19. Anholonomic deformations in the ether: a significance for the electrodynamic potentials
  25. 20. Can biology accommodate laws beyond physics?
  26. 21. Some epistemological issues in physics and biology
  27. 22. A science of qualities
  28. 23. Complementarity and the union of opposites
  29. 24. Category theory and family resemblances
  30. 25. The implicate brain
  31. 26. Three holonomic approaches to the brain
  32. 27. Wholeness and dreaming
  33. 28. Vortices of thought in the implicate order and their release in meditation and dialogue
  34. 29. Reflectaphors: the (implicate) universe as a work of art
  35. 30. Meaning as being in the implicate order philosophy of David Bohm: a conversation
  36. Index