The Radon Transform and Local Tomography
eBook - ePub

The Radon Transform and Local Tomography

  1. 512 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

The Radon Transform and Local Tomography

About this book

Over the past decade, the field of image processing has made tremendous advances. One type of image processing that is currently of particular interest is "tomographic imaging," a technique for computing the density function of a body, or discontinuity surfaces of this function. Today, tomography is widely used, and has applications in such fields as medicine, engineering, physics, geophysics, and security. The Radon Transform and Local Tomography clearly explains the theoretical, computational, and practical aspects of applied tomography. It includes sufficient background information to make it essentially self-contained for most readers.

Tools to learn more effectively

Saving Books

Saving Books

Keyword Search

Keyword Search

Annotating Text

Annotating Text

Listen to it instead

Listen to it instead

Information

CHAPTER 1

INTRODUCTION

1.1. Brief description of new results and the aims of the book

The Radon transform of a function f(x), x ∈ ℝn, is defined to be
Rffˆ(α,p) lαpf(x)ds,
(1.1.1)
where αSn−1, Sn−1 is the unit sphere in ℝn, p ∈ ℝ, lαp ≔ {x: α · x = p} is a plane, and ds is the Lebesgue measure on this plane. It is assumed that f(x) is integrable over any plane. A natural question to ask is: how can one recover f(x) knowing fˆ(α,p)? This question, in the case n = 2, was posed and solved by Radon in 1917 [Ra]. However, according to [De2, p.3], Uhlenbeck (1925) wrote that Lorentz, the famous Dutch physicist, the author of the theory of electrons and the Nobel prize winner in physics for 1902 (jointly with P. Zeeman), knew the inversion formula for the Radon transform already around the turn of the century. In the mathematical literature the Radon transform was used in the books [J3] and [GS] for construction of fundamental solutions to partial differential equations with constant coefficients. Inversion of the Radon transform was one of the first problems of integral geometry, which is a branch of mathematics dealing with the recovery of functions knowing their integrals over a family of manifolds [LRS].
Radon’s paper was not used for a long time. The rapid development of applications of the Radon transform started in the early 1970s. It is not possible to mention all the relevant works in medicine, astronomy, optics, physics, geophysics, and other areas. A vast bibliography is given in [De2], [Nat3]. The most well known applications are in computed tomography (X-ray transmission tomography, emission tomography, and ultrasound tomography). The Nobel prize in physiology and medicine was awarded in 1979 to A. Cormack and G. Hounsfield for their work on applications of tomography to medical diagnostics.
The Radon transform is a particular case of the more general Xm-ray transform, which is defined as follows:
Xmf=nMmf ds,
(1.1.2)
where Mm runs through the set of m-dimensional affine manifolds, 1 ≤ mn − 1, and ds is the m-dimensional Lebesgue measure on ℝnMm. If m = 1, we obtain X-ray transform – the integrals of f over straight lines:
X ff(x+αt)dtg(x,α),
(1.1.3)
where αSn−1 and x ∈ ℝn runs through a subset of ℝn. For example, this subset may be a curve, a surface or other manifold in ℝn. If m = n − 1, we obtain the Radon transform (1.1.1), that is Xn−1 f = Rf.
Let us consider the practically important case n = 2. In this case the Radon transform and X-ray transform coincide and, basically, one is given the integrals of a three-dimensional object f along all lines located on a fixed plane through the object. Such data can be collected observing attenuation of X-rays passing through the object (see Section 1.2.1, p. 6). The problem is: given the line integral data, recover f on the plane. This gives a two-dimensional slice of f. Stacking many two-dimensional slices, if necessary, one can recover the three-dimensional object. Unfortunately, the conventional two-dimensional reconstruction is not local: to compute f at a point x one needs to know the integrals of f along all lines on the plane intersecting the support of f, even along the lines far removed from x. Moreover, in practice, it might be impossible to collect the complete data set: for example, if the object is too big. Suppose now that one is interested in the recovery of f not for all x ∈ supp f, but for x only in some subset U ⊂ supp f. The subset U will be call...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Dedication
  6. Preface
  7. Table of Contents
  8. Chapter 1. Introduction
  9. Chapter 2. Properties of the Radon transform and inversion formulas
  10. Chapter 3. Range Theorems and reconstruction algorithms
  11. Chapter 4. Singularities of the Radon transform
  12. Chapter 5. Local Tomography
  13. Chapter 6. Pseudolocal Tomography
  14. Chapter 7. Geometrical tomography
  15. Chapter 8. Inversion of incomplete tomographic data
  16. Chapter 9. Inversion of cone-beam data
  17. Chapter 10. Radon transform of distributions
  18. Chapter 11. Abel-type integral equation
  19. Chapter 12. Multidimensional algorithm for finding discontinuities of signals from noisy discrete data
  20. Chapter 13. Test of randomness and its applications
  21. Chapter 14. Auxiliary Results
  22. Research Problems
  23. Bibliographical notes
  24. References
  25. List of notations
  26. Index

Frequently asked questions

Yes, you can cancel anytime from the Subscription tab in your account settings on the Perlego website. Your subscription will stay active until the end of your current billing period. Learn how to cancel your subscription
No, books cannot be downloaded as external files, such as PDFs, for use outside of Perlego. However, you can download books within the Perlego app for offline reading on mobile or tablet. Learn how to download books offline
Perlego offers two plans: Essential and Complete
  • Essential is ideal for learners and professionals who enjoy exploring a wide range of subjects. Access the Essential Library with 800,000+ trusted titles and best-sellers across business, personal growth, and the humanities. Includes unlimited reading time and Standard Read Aloud voice.
  • Complete: Perfect for advanced learners and researchers needing full, unrestricted access. Unlock 1.4M+ books across hundreds of subjects, including academic and specialized titles. The Complete Plan also includes advanced features like Premium Read Aloud and Research Assistant.
Both plans are available with monthly, semester, or annual billing cycles.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 990+ topics, we’ve got you covered! Learn about our mission
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more about Read Aloud
Yes! You can use the Perlego app on both iOS and Android devices to read anytime, anywhere — even offline. Perfect for commutes or when you’re on the go.
Please note we cannot support devices running on iOS 13 and Android 7 or earlier. Learn more about using the app
Yes, you can access The Radon Transform and Local Tomography by Alexander G. Ramm,Alex I. Katsevich in PDF and/or ePUB format, as well as other popular books in Mathematics & Applied Mathematics. We have over one million books available in our catalogue for you to explore.