Astronomical Observations:  Astronomy and the Study of Deep Space
eBook - ePub

Astronomical Observations: Astronomy and the Study of Deep Space

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Astronomical Observations: Astronomy and the Study of Deep Space

Book details
Book preview
Table of contents
Citations

About This Book

The night sky is positively teeming with wonders, from star clusters and nebulae to quasars. Astronomy is the means by which these and other similar phenomena are discovered and observed. This stellar resource traces the path of modern astronomy, from initial efforts to map the heavens to today's use of high-tech telescopic devices that help people delve deeper into celestial discovery.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Astronomical Observations: Astronomy and the Study of Deep Space by Britannica Educational Publishing, Erik Gregersen in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Astronomy & Astrophysics. We have over one million books available in our catalogue for you to explore.

Information

CHAPTER 1
AN OVERVIEW

Image
Astronomy is the science that encompasses the study of all extraterrestrial objects and phenomena. Until the invention of the telescope and the discovery of the laws of motion and gravity in the 17th century, astronomy was primarily concerned with noting and predicting the positions of the Sun, Moon, and planets, originally for calendrical and astrological purposes and later for navigational uses and scientific interest. The catalog of objects now studied is much broader and includes, in order of increasing distance, the solar system, the stars that make up the Milky Way Galaxy, and other, more distant galaxies. With the advent of scientific space probes, Earth has also come to be studied as one of the planets, though its more detailed investigation remains the domain of the geologic sciences.

THE SCOPE OF ASTRONOMY


Since the late 19th century astronomy has expanded to include astrophysics, the application of physical and chemical knowledge to an understanding of the nature of celestial objects and the physical processes that control their formation, evolution, and emission of radiation. In addition, the gases and dust particles around and between the stars have become the subjects of much research. Study of the nuclear reactions that provide the energy radiated by stars has shown how the diversity of atoms found in nature can be derived from a universe that, following the first few minutes of its existence, consisted only of hydrogen, helium, and a trace of lithium. Concerned with phenomena on the largest scale is cosmology, the study of the evolution of the universe. Astrophysics has transformed cosmology from a purely speculative activity to a modern science capable of predictions that can be tested.
Image
Hubble Space Telescope, photographed by the space shuttle Discovery. NASA
Its great advances notwithstanding, astronomy is still subject to a major constraint: it is inherently an observational rather than an experimental science. Almost all measurements must be performed at great distances from the objects of interest, with no control over such quantities as their temperature, pressure, or chemical composition. There are a few exceptions to this limitation—namely, meteorites, rock and soil samples brought back from the Moon, samples of comet dust returned by robotic spacecraft, and interplanetary dust particles collected in or above the stratosphere. These can be examined with laboratory techniques to provide information that cannot be obtained in any other way. In the future, space missions may return surface materials from Mars, asteroids, or other objects, but much of astronomy appears otherwise confined to Earth-based observations augmented by observations from orbiting satellites and long-range space probes and supplemented by theory.

MAPPING THE SKY


One of the first endeavours of astronomers was to map what they saw in the heavens, to make a cartographic representation of the stars, galaxies, or surfaces of the planets and the Moon. Modern maps of this kind are based on a coordinate system analogous to geographic latitude and longitude. In most cases, modern maps are compiled from photographic observations made either with Earth-based equipment or with instruments carried aboard spacecraft.

NATURE AND SIGNIFICANCE


Brighter stars and star groupings are easily recognized by a practiced observer. The much more numerous fainter celestial bodies can be located and identified only with the help of astronomical maps, catalogs, and in some cases almanacs.
The first astronomical charts, globes, and drawings, often decorated with fantastic figures, depicted the constellations, recognizable groupings of bright stars known by imaginatively chosen names that have been for many centuries both a delight to man and a dependable aid to navigation. Several royal Egyptian tombs of the 2nd millennium BCE include paintings of constellation figures, but these cannot be considered accurate maps. Classical Greek astronomers used maps and globes; unfortunately, no examples survive. Numerous small metal celestial globes from Islamic makers of the 11th century onward remain. The first printed planispheres (representations of the celestial sphere on a flat surface) were produced in 1515, and printed celestial globes appeared at about the same time.
Telescopic astronomy began in 1609, and by the end of the 17th century the telescope was applied in mapping the stars. In the latter part of the 19th century, photography gave a powerful impetus to precise chart making, culminating in the 1950s in the publication of National Geographic Society–Palomar Observatory Sky Survey, a portrayal of the part of the sky visible from Palomar Observatory in California.
Many modern maps used by amateur and professional observers of the sky show stars, dark nebulas of obscuring dust, and bright nebulas (masses of tenuous, glowing matter). Specialized maps show sources of radio radiation, sources of infrared radiation, and quasi-stellar objects having very large redshifts (the spectral lines are displaced toward longer wavelengths) and very small images. Astronomers of the 20th century have divided the entire sky into 88 areas, or constellations; this international system codifies the naming of stars and star patterns that began in prehistoric times. Originally only the brightest stars and most conspicuous patterns were given names, probably based on the actual appearance of the configurations. Beginning in the 16th century, navigators and astronomers have progressively filled in all the areas left undesignated by the ancients.

THE CELESTIAL SPHERE


To any observer, ancient or modern, the night sky appears as a hemisphere resting on the horizon. Consequently, the simplest descriptions of the star patterns and of the motions of heavenly bodies are those presented on the surface of a sphere.
The daily eastward rotation of Earth on its axis produces an apparent diurnal westward rotation of the starry sphere. Thus, the stars seem to rotate about a northern or southern celestial pole, the projection into space of Earth’s own poles. Equidistant from the two poles is the celestial equator; this great circle is the projection into space of Earth’s Equator.
Part of the sky adjacent to a celestial pole is always visible, and an equal area about the opposite pole is always invisible below the horizon. The rest of the celestial sphere appears to rise and set each day. For any other latitude, the particular part of sky visible or invisible will be different. An observer situated at Earth’s North Pole could observe only the stars of the northern celestial hemisphere. An observer at the Equator, however, would be able to see the entire celestial sphere as the daily motion of Earth carried him around.
In addition to their apparent daily motion around Earth, the Sun, Moon, and planets of the solar system have their own motions with respect to the starry sphere. Since the Sun’s brilliance obscures the background stars from view, it took many centuries before observers discovered the precise path of the Sun through the constellations that are now called the signs of the zodiac. The great circle of the zodiac traced out by the Sun on its annual circuit is the ecliptic (so called because eclipses can occur when the Moon crosses it).
As viewed from space, Earth slowly revolves about the Sun in a fixed plane, the ecliptic plane. A line perpendicular to this plane defines the ecliptic pole, and it makes no difference whether this line is projected into space from Earth or from the Sun. All that is important is the direction because the sky is so far away that the ecliptic pole must fall on a unique point on the celestial sphere.
The principal planets in the solar system revolve about the Sun in nearly the same plane as Earth’s orbit, and their movements are therefore projected onto the celestial sphere nearly, but seldom exactly, on the ecliptic. The Moon’s orbit is tilted by about five degrees from this plane, and hence its position in the sky deviates from the ecliptic more than those of the other planets.
Because the blinding sunlight blocks some stars from view, the particular constellations that can be seen depend on the position of Earth in its orbit—i.e., on the apparent place of the Sun. The stars visible at midnight will shift westward by about one degree each successive midnight as the Sun progresses in its apparent eastward motion. Stars visible at midnight in September will be concealed by the dazzling noontime Sun 180 days later in March.
Why the ecliptic and celestial equator meet at an angle of 23° 26.6’ is an unexplained mystery originating in Earth’s past. The angle gradually varies by small amounts as a result of Moon- and planet-caused gravitational perturbations on Earth. The ecliptic plane is comparatively stable, but the equatorial plane is continually shifting as Earth’s axis of rotation changes its direction in space. The successive positions of the celestial poles trace out large circles on the sky within a period of about 26,000 years. This phenomenon, known as precession of the equinoxes, causes a series of different stars to become pole stars in turn. Polaris, the present pole star, will come nearest to the north celestial pole around the year 2100 CE. At the time the pyramids were built, Thuban in the constellation Draco served as the pole star, and in about 12,000 years the first-magnitude star Vega will be near the north celestial pole. Precession also makes the coordinate systems on precise star maps applicable only for a specific epoch.

CELESTIAL COORDINATE SYSTEMS


On Earth, locations are designated by latitude and longitude. Yet there are several coordinate systems that work in much the same way as the longitude-latitude system.

THE HORIZON SYSTEM

The simple altazimuth system, which depends on a particular place, specifies positions by altitude (the angular elevation from the horizon plane) and azimuth (the angle clockwise around the horizon, usually starting from the north). Lines of equal altitude around the sky are called almucantars. The horizon system is fundamental in navigation, as well as in terrestrial surveying. For mapping the stars, however, coordinates fixed with respect to the celestial sphere itself (such as the ecliptic or equatorial systems) are far more suitable.

THE ECLIPTIC SYSTEM

Celestial longitude and latitude are defined with respect to the ecliptic and ecliptic poles. Celestial longitude is measured eastward from the ascending intersection of the ecliptic with the equator, a position known as the “first point of Aries,” and the place of the Sun at the time of the vernal equinox around March 21. The first point of Aries is symbolized by the ram’s horns (
Image
).
Unlike the celestial equator, the ecliptic is fixed among the stars. However, the ecliptic longitude of a given star increases by 1.396° per century owing to the precessional movement of the equator—similar to the precessional movement of a child’s top—which shifts the first point of Aries. The first 30 degrees along the ecliptic is nominally designated as the sign Aries, although this part of the ecliptic has now moved forward into the constellation Pisces. Ecliptic coordinates predominated in Western astronomy until the Renaissance. (In contrast, Chinese astronomers always used an equatorial system.) With the advent of national nautical almanacs, the equatorial system, which is better suited to observation and navigation, gained ascendancy.

THE EQUATORIAL SYSTEM

Based on the celestial equator and poles, the equatorial coordinates, right ascension and declination, are directly analogous to terrestrial longitude and latitude. Right ascension, measured eastward from the first point of Aries, is customarily divided into 24 hours rather than 360°, thus emphasizing the clocklike behaviour of the sphere. Precise equatorial positions must be specified for a particular year, since the precessional motion continually changes the measured coordinates.

THE GALACTIC SYSTEM

In the galactic system the two coordinates, galactic latitude and longitude, constitute a useful means of locating the relative positions and motions of components of the Milky Way. Galactic latitude (denoted by the symbol b) is measured in degrees north or south of the galaxy’s fundamental plane of symmetry. This plane is defined by the galactic equator, the great circle in the sky best fitting the plane of the Milky Way, as determined by a combination of optical and radio measurements. The galactic equator is inclined at about 62°36’ to the celestial equator, which is the projection of Earth’s Equator into the sky.
Galactic longitude (denoted by the symbol l) is measured in degrees eastward of an imaginary line running across the plane of the galaxy and connecting Earth (assumed to be on that plane) with a point near the galactic centre in the constellation Sagittarius. Before 1958, galactic longitude was measured from an arbitrarily chosen point, an intersection of the galactic and celestial equators in the constellation Aquila. The development of radio astronomy and rediscussion of optical results led to a more accurate determination of the position of the galactic centre and its adoption in 1958 as the new zero point of longitude. (Subsequent observations have identified the radio source Sagittarius A*, which is offset from the longitude zero point, as the true centre of the Milky Way Galaxy.)
At the same time, the positions of the galactic poles and equator were redefined, with a change of less than 2° in the positions of the poles. The north galactic pole is now considered to be in the constellation Coma Berenices, at +90° galactic latitude, and with equatorial (Earth-based) coordinates of 12 hours 49 minutes right ascension, 27°24’ north declination.

THE CONSTELLATIONS AND OTHER SKY DIVISIONS


Recognition of the constellations can be traced to early c...

Table of contents

  1. Cover Page
  2. Title Page
  3. Copyright Page
  4. Contents
  5. Introduction
  6. Chapter 1: An Overview
  7. Chapter 2: Astronomical Techniques and Applications
  8. Chapter 3: Astronomical Objects and Their Motions
  9. Chapter 4: Observatories and Telescopes
  10. Chapter 5: Astronomers Through the Ages
  11. Chapter 6: The Impact of Astronomy
  12. Appendix A: Beyond Telescopes: Other Astronomical Instrumentation
  13. Appendix B: Notable Observatories and Telescopes
  14. Appendix C: Constellations
  15. Appendix D: Select Ground-Based Optical Telescopes
  16. Appendix E: Select Radio Telescopes
  17. Glossary
  18. For Further Reading
  19. Index