Biomes and Ecosystems
eBook - ePub

Biomes and Ecosystems

Britannica Educational Publishing, John P Rafferty

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Biomes and Ecosystems

Britannica Educational Publishing, John P Rafferty

Book details
Book preview
Table of contents
Citations

About This Book

Earth's biosphere supports several unique biomes and ecosystems. Though they operate as self-contained units, these regions also operate as part of a global network, nurturing interdependence among greatly diverse plant and animal species. The evolution of these wondrous realms—both aquatic and terrestrial—and the various natural elements that distinguish them from one another are the subjects of this comprehensive volume.

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Biomes and Ecosystems an online PDF/ePUB?
Yes, you can access Biomes and Ecosystems by Britannica Educational Publishing, John P Rafferty in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Ecology. We have over one million books available in our catalogue for you to explore.

Information

CHAPTER 1
EARTH’S BIOSPHERE

Image
Before the coming of life, the Earth was a bleak place, a rocky globe with shallow seas and a thin band of gases—largely carbon dioxide, carbon monoxide, molecular nitrogen, hydrogen sulfide, and water vapour. It was a hostile and barren planet. This strictly inorganic state of the Earth is called the geosphere; it consists of the lithosphere (the rock and soil), the hydrosphere (the water), and the atmosphere (the air). Energy from the Sun relentlessly bombarded the surface of the primitive Earth, and in time—millions of years—chemical and physical actions produced the first evidence of life: formless, jellylike blobs that could collect energy from the environment and produce more of their own kind. This generation of life in the thin outer layer of the geosphere established what is called the biosphere, the “zone of life,” an energy-diverting skin that uses the matter of the Earth to make living substance.
The biosphere is a system characterized by the continuous cycling of matter and an accompanying flow of solar energy in which certain large molecules and cells are self-reproducing. Water is a major predisposing factor, for all life depends on it. The elements carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur, when combined as proteins, lipids, carbohydrates, and nucleic acids, provide the building blocks, the fuel, and the direction for the creation of life. Energy flow is required to maintain the structure of organisms by the formation and splitting of phosphate bonds. Organisms are cellular in nature and always contain some sort of enclosing membrane structure, and all have nucleic acids that store and transmit genetic information.
All life on Earth depends ultimately upon green plants, as well as upon water. Plants utilize sunlight in a process called photosynthesis to produce the food upon which animals feed and to provide, as a by-product, oxygen, which most animals require for respiration. At first, the oceans and the lands were teeming with large numbers of a few kinds of simple single-celled organisms, but slowly plants and animals of increasing complexity evolved. Interrelationships developed so that certain plants grew in association with certain other plants, and animals associated with the plants and with one another to form communities of organisms, including those of forests, grasslands, deserts, dunes, bogs, rivers, and lakes. Living communities and their nonliving environment are inseparably interrelated and constantly interact upon each other. For convenience, any segment of the landscape that includes the biotic and abiotic components is called an ecosystem. A lake is an ecosystem when it is considered in totality as not just water but also nutrients, climate, and all of the life contained within it. A given forest, meadow, or river is likewise an ecosystem. One ecosystem grades into another along zones termed ecotones, where a mixture of plant and animal species from the two ecosystems occurs. A forest considered as an ecosystem is not simply a stand of trees but is a complex of soil, air, and water, of climate and minerals, of bacteria, viruses, fungi, grasses, herbs, and trees, of insects, reptiles, amphibians, birds, and mammals.
Image
EncyclopĂŚdia Britannica, Inc.
Stated another way, the abiotic, or nonliving, portion of each ecosystem in the biosphere includes the flow of energy, nutrients, water, and gases and the concentrations of organic and inorganic substances in the environment. The biotic, or living, portion includes three general categories of organisms based on their methods of acquiring energy: the primary producers, largely green plants; the consumers, which include all the animals; and the decomposers, which include the microorganisms that break down the remains of plants and animals into simpler components for recycling in the biosphere. Aquatic ecosystems are those involving marine environments and freshwater environments on the land. Terrestrial ecosystems are those based on major vegetational types, such as forest, grassland, desert, and tundra. Particular kinds of animals are associated with each such plant province.
Ecosystems may be further subdivided into smaller biotic units called communities. Examples of communities include the organisms in a stand of pine trees, on a coral reef, and in a cave, a valley, a lake, or a stream. The major consideration in the community is the living component, the organisms; the abiotic factors of the environment are excluded.
A community is a collection of species populations. In a stand of pines, there may be many species of insects, of birds, of mammals, each a separate breeding unit but each dependent on the others for its continued existence. A species, furthermore, is composed of individuals, single functioning units identifiable as organisms. Beyond this level, the units of the biosphere are those of the organism: organ systems composed of organs, organs of tissues, tissues of cells, cells of molecules, and molecules of atomic elements and energy. The progression, therefore, proceeding upward from atoms and energy, is toward fewer units, larger and more complex in pattern, at each successive level.

THE DIVERSITY OF LIFE


The biosphere supports between 3 and 30 million species of plants, animals, fungi, single-celled prokaryotes such as bacteria, and single-celled eukaryotes such as protozoans. Of this total, only about 1.4 million species have been named so far, and fewer than 1 percent have been studied for their ecological relationships and their role in ecosystems. A little more than half the named species are insects, which dominate terrestrial and freshwater communities worldwide; the laboratories of systematists are filled with insect species yet to be named and described. Hence, the relationships of organisms to their environments and the roles that species play in the biosphere are only beginning to be understood.
This tremendous diversity of life is organized into natural ecological groupings. As life has evolved, populations of organisms have become separated into different species that are reproductively isolated from one another. These species are organized through their interrelationships into complex biological communities. The interactions in these communities affect, and are affected by, the physical environments in which they occur, thereby forming ecosystems through which the energy and nutrients necessary for life flow and cycle. The mix of species and physical environments vary across the globe, creating ecological communities, or biomes, such as the boreal forests of North America and Eurasia and the rainforests of the tropics. The sum total of the richness of these biomes is the biosphere.
This hierarchical organization of life has come about through the major processes of evolution—natural selection (the differential success of the reproduction of hereditary variations resulting from the interaction of organisms with their environment), gene flow (the movement of genes among different populations of a species), and random genetic drift (the genetic change that occurs in small populations owing to chance). Natural selection operates on the expressed characteristics of genetic variants found within populations, winnowing members of the population who are less well suited to their environment from those better suited to it. In this manner, populations become adapted to their local ecosystems, which include both the physical environment and the other species with which they interact in order to survive and reproduce.
Image
One estimate of the number of known living species. The majority of species are still unknown—i.e., yet to be described by taxonomists. Encyclopædia Britannica, Inc.
The genetic variation that is necessary for a species to adapt to the physical environment and to other organisms arises from new mutations within populations, the recombination of genes during sexual reproduction, and the migration of and interbreeding with individuals from other populations. In very small populations, however, some of that variation is lost by chance alone through random genetic drift. The combined result of these evolutionary processes is that after many generations populations of the same species have widely divergent characteristics. Some of these populations eventually become so genetically different that their members cannot successfully interbreed, resulting in the evolution of a separate species (that is, speciation).
The diversification of life through local adaptation of populations and speciation has created the tremendous biodiversity found on the Earth. In most regions a square kilometre (0.4 square mile) will harbour hundreds—in some places even thousands—of species. The interactions between these species create intricate webs of relationships as the organisms reciprocally evolve, adapting to one another and becoming specialized for their interactions. Natural communities of species reflect the sum of these species’ interactions and the ongoing complex selection pressures they constantly endure that drive their evolution. The many ecological and evolutionary processes that affect the relationships among species and their environments render ecology one of the most intricate of the sciences. The answers to the major questions in ecology require an understanding of the relative effects of many variables acting simultaneously.

THE IMPORTANCE OF THE BIOSPHERE


The continued functioning of the biosphere is dependent not only on the maintenance of the intimate interactions among the myriad species within local communities but also on the looser yet crucial interactions of all species and communities around the globe. The Earth is blanketed with so many species and so many different kinds of biological communities because populations have been able to adapt to almost any kind of environment on Earth through natural selection. Life-forms have evolved that are able to survive in the ocean depths, the frigid conditions of Antarctica, and the near-boiling temperatures of geysers. The great richness of adaptations found among different populations and species of living organisms is the Earth’s greatest resource. It is a richness that has evolved over millions of years and is irreplaceable.
It is therefore startling to realize that our inventory of the Earth’s diversity is still so incomplete that the total number of living species cannot be estimated more closely than between 3 and 30 million species. Decades of continuous research must be carried out by systematists, ecologists, and geneticists before the inventory of biodiversity provides a more accurate count. The research has been slow. Only recently, as the extinction rate of species has been increasing rapidly, have societies begun to realize the interdependence of species. To sustain life on Earth, more than the few animal and plant species used by humans must be preserved. The flow of energy and the cycling of nutrients through ecosystems, the regulation of populations, and the stability of biological communities, all of which support the continued maintenance of life, rely on the diversity of species, their adaptations to local physical conditions, and their coevolved relationships.
Despite the limited scientific knowledge of most species, ecological studies during the 20th century have made great headway in unraveling the mechanisms by which organisms coevolve with one another and adapt to their physical environment, thereby shaping the biosphere. Each new decade has produced a steady stream of studies showing that the biological and physical elements of the Earth are more interconnected than had been previously thought. Those studies also have shown that often the most seemingly insignificant species are crucial to the stability of communities and ecosystems. Many seemingly obscure species are at risk worldwide of being dismissed as unimportant. The effect that the loss of species will have on ecosystems is appreciated only by understanding the relationships between organisms and their environments and by studying the ecological and evolutionary processes operating within ecosystems.
The need to understand how the biosphere functions has never been greater. When human population levels were low and technological abilities crude, societies’ impact on the biosphere was relatively small. The increase in human population levels and the harvesting of more of the Earth’s natural resources has altered this situation, especially in recent decades. Human activities are causing major alterations to the patterns of energy flow and nutrient cycling through ecosystems, and these activities are eliminating populations and species that have not even been described but which might have been of central importance to the maintenance of ecosystems.
The biologist Edward O. Wilson, who coined the term “biodiversity,” estimated conservatively that in the late 20th century at least 27,000 species are becoming extinct each year. The majority of these are small tropical organisms. The impact that this freshet of extinctions would have on the biosphere is akin to receiving a box of engine parts and discarding a portion of them before reading the directions, assuming that their absence will have no negative repercussions on the running of the engine. The following sections describe how many of the biological and physical parts fit together to make the engine of the biosphere run and why many seemingly obscure species are important to the long-term functioning of the biosphere.

THE FLOW OF ENERGY


Most solar energy occurs at wavelengths unsuitable for photosynthesis. Between 98 and 99 percent of solar energy reaching the Earth is reflected from leaves and other surfaces and absorbed by other molecules, which convert it to heat. Thus, only 1 to 2 percent is available to be captured by plants. The rate at which plants photosynthesize depends on the amount of light reaching the leaves, the temperature of the environment, and the availability of water and other nutrients such as nitrogen and phosphorus. The measurement of the rate at which organisms convert light energy (or inorganic chemical energy) to the chemical energy of organic compounds is called primary productivity. Hence, the total amount of energy assimilated by plants in an ecosystem during photosynthesis (gross primary productivity) varies among environments. (Productivity is often measured by an increase in biomass, a term used to refer to the weight of all living organisms in an area. Biomass is reported in grams or metric tons.)
Image
Much of the energy assimilated by plants through photosynthesis is not stored as organic material but instead is used during cellular respiration. In this process organic compounds such as carbohydrates, proteins, and fats are broken down, or oxidized, to provide energy (in the form of adenosine triphosphate [ATP]) for the cell’s metabolic needs. The energy not used in this process is stored in plant tissues for further use and is called net primary productivity. About 40 to 85 percent of gross primary productivity is not used during respiration and becomes net primary productivity. The highest net primary productivity in terrestrial environments occurs in swamps and marshes and tropical rainforests; the lowest occurs in deserts. In aquatic environments, the highest net productivity occurs in estuaries, algal beds, and reefs. Consequently, these environments are especially critical for the maintenance of worldwide biological productivity.
A small amount of the energy stored in plants, between 5 and 25 percent, passes into herbivores (plant eaters) as they feed, and a similarly small percentage of the energy in herbivores then passes into carnivores (animal eaters). The result is a pyramid of energy, with most energy concentrated in the photosynthetic organisms at the bottom of food chains and less energy at each higher trophic level (a division based on the main nutritional source of the organism). Some of the remaining energy does not pass directly into the plant-herbivore-carnivore food chain but instead is diverted into the detritus food chain. Bacteria, fungi, scavengers, and carrion eaters that consume detritus (detritivores) are all eventually consumed by other organisms.
The rate at which these consumers convert the chemical energy of their food into their own biomass is called secondary productivity. The efficiency at which energy is transferred from one trophic level to another is called ecological efficiency. On average it is estimated that there is only a 10 percent transfer of energy.
Energy is lost in several ways as it flows along these pathways of consumption. Most plant tissue is uneaten by herbivores, and this stored energy is therefore lost to the plant-herbivore-carnivore food chain. In terrestrial communities less than 10 percent of plant tissue is actually consumed by herbivores. The rest falls into the detritus pathway, although the detritivores consume only some of this decaying tissue. Oil and coal deposits are major repositories of this unused plant energy and have accumulated over long periods of geologic time.
The efficiency by which animals convert the food they ingest into energy for growth and reproduction is called assimilation efficiency. Herbivores assimilate between 15 and 80 percent of the plant material they ingest, depending on their physiology and the part of the plant that they eat. For example, herbiv...

Table of contents