Sustaining Mobile Learning
eBook - ePub

Sustaining Mobile Learning

Theory, research and practice

  1. 232 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Sustaining Mobile Learning

Theory, research and practice

Book details
Book preview
Table of contents
Citations

About This Book

Mobile technologies are one of the fastest growing areas of technology in education. For learners, they offer an appealing opportunity to transcend teacher-defined knowledge and approaches by being able to access multiple, alternative sources of information anytime and anywhere. While the pace of engagement with and research into the educational applications of mobile technologies has picked up dramatically in the last decade, there is no consolidated view of how to sustain the practices or opportunities that are being explored.

Sustainability is a complex but crucial issue in mobile learning as educational institutions are usually required to make substantial investments in mobile devices and associated technologies, time and training to initiate mobile learning programs. The complexity of sustainable mobile learning programs is further exacerbated by the fast pace of change of digital technologies, where with every change, new possibilities are opened up and investments required. In addition, educators are still attempting to reconcile institutions of formal education with informal mobile learning. The book addresses these issues, with a particular focus on:



  • exploring the challenges surrounding the sustainability of mobile learning in K-12 and higher education


  • investigating the importance of sustaining mobile learning for diverse populations of students globally


  • discussing theoretical models for the sustainability of mobile learning


  • providing the reader with strategies for sustaining mobile learning.

Presenting new research alongside theoretical models and ideas for practice, the book will appeal to researchers, academics, and postgraduate students in the fields of education and mobile learning, as well as those working in teacher education.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Sustaining Mobile Learning by Wan Ng,Therese M. Cumming in PDF and/or ePUB format, as well as other popular books in Education & Education General. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2015
ISBN
9781317660781
Edition
1

1 Sustaining innovation in learning with mobile devices Key challenges

Wan Ng
Howard Nicholas
DOI: 10.4324/9781315766553-1

Introduction

The penetration of mobile technology into our everyday lives is evident everywhere we look. According to a World Bank report, there were more than 6 billion mobile phone subscriptions worldwide in 2011 (World Bank, 2012). The International Telecommunication Union reported the subscription figure to be around 6.8 billion for 2012 (ITU, 2013). Kelly and Minges (2012, p. 8) in the World Bank report declared that this global pace of growth in mobile phone uptake is “unmatched in the history of technology”, and also noted that the increase in adoption of mobile devices in developing countries is greater than in the developed world. For users in developing countries, there is now almost limitless accessibility to mobile applications (apps), at least in those places where apps have also been locally developed to address challenges such as affordability and literacy. Kelly and Minges (2012) further added that we are now only seeing the beginning of the growth curve in mobile technology and that with mobile devices becoming more powerful and affordable, the ‘apps’ economy will continue to grow, with a prediction of an 18-fold increase in mobile data traffic between 2011 and 2016 (Cisco, 2012).
While mobile devices are creating unprecedented opportunities for employment, education, and entertainment in developing countries, they are also making a great impact in developed countries, in particular through smartphones and tablets. In the 2010s, our lives have become comprehensively integrated into the digital world. The ITU (ITU, 2014) has predicted that in developed countries mobile-broadband penetration, that is, wireless Internet access through a mobile device, will reach 84% (of their populations) by the end of 2014. Patrik Cerwall (2012), Head of Strategic Marketing and Intelligence at Ericsson, stated that as the connected and networked society is taking shape, mobility is becoming an integral part of our everyday lives and future. The mobile phone has evolved from a single channel for voice with 2G (second generation wireless telephone technology) capability for text messages, picture and multimedia (MMS) messages, to the smartphone with 3G/4G wireless mobile Internet services and additional capabilities for instant text messaging, voice messaging and video calling features, streaming, global positioning systems (GPS), geotagging and high end applications. Table 1.1 shows Minges’ (2012, p. 15) summary of the evolution of the capabilities of mobile devices from the basic mobile phone to the smartphone and computer tablet. The list of capabilities is not exhaustive, and not all devices have all features. However, the increased capabilities with more processing power of mobile devices has seen a dramatic rise in sales and ownership of smartphones and tablets over the last few years (BBC, 2008; Cerwall, 2012; Griffith, 2013a; Lomas, 2013; Nielsen, 2010; Whitney, 2009). BBC online (2008) reports that mobile net users are younger and search for different things on the Internet, and Nielsen (2010, p. 2) states that “Young people around the world are more immersed in mobile technology than any previous generation”. Brown and Diaz (2010) highlighted the computing industry’s focus on mobile technology, citing Google’s CEO Eric Schmidt’s assertion of “mobile first” in the company’s policy. Innovations will continue to expand with changes in mobile devices, for example, attempting to capitalise on the best of both worlds from a phone and tablet wrapped into one to produce the 6-inch phablet (Griffith, 2013b). The phablet is a smartphone with the advantage of a larger screen that is intermediate in size between a typical smartphone and a tablet computer. Another innovation reported recently is Google’s development of a tablet application to capture precise three-dimensional images of objects (Mukherjee, 2014).
Table 1.1 Mobile devices and their capabilities (adapted from Minges, 2012, p. 15)
Device Capabilities Device Capabilities
Basic mobile phone Network services, including:
  • Voice telephony and voice mail
  • SMS (short message service)
  • USSD (unstructured supplementary service data)
  • SMS-based services such as mobile money
  • USSD services such as instant messaging
Smartphone As Feature phone plus:
  • Video camera
  • Web browser
  • GPS (global positioning system)
  • 3G+ internet access
  • Mobile operating “platforms” such as iOS, Android, Blackberry
  • Ability to download and manage applications
  • VoIP (Voice over Internet Protocol)
  • Mobile TV (if available)
  • Removable memory card
Feature phone As basic mobile phone plus:
  • Multimedia Messaging Service (MMS)
  • Still picture camera
  • MP3 music player
  • 2.5G data access
Tablet As Smartphone plus:
  • Front and rear-facing video cameras (for video calls)
  • Larger screen and memory capability
  • Faster processor, enabling video playback
  • Touchscreen with virtual keyboard
  • USB (universal serial bus) port
In education, studies and reports of adolescents and young adults’ ownership of smart devices are consistent with the reports of the rapid rise in sales of smartphones and tablets. For example, a recent study of 1,129 Australian adolescent students (ages 12–15) shows that 97% of the responding students owned a mobile phone at the end of 2013, with two-thirds (66%) owning a personal smartphone and 71% owning or having access to computer tablets at home or as part of their school programs (Ng & Nicholas, manuscript in preparation). The data is consistent with the report from UK’s telecom regulator (Ofcom, 2013) on UK adolescents’ proportion of ownership of mobile phones and tablets. The Ofcom report indicated that the smartphone ownership for 12–15 year olds was 62% and that there had been a tripling of tablet computers in the homes of 5–15 year olds, a sharp increase from their 2012 survey. Pew Internet Research in the US (2013) found a similar proportion of 66% smartphone ownership by young adults between 18–29 years of age. It is anticipated that almost all adolescents and young adults will own a smart device in the next few years, with the ownership starting at a much younger age. In a recent study Zero to eight: Children’s media use in America 2013 (Rideout, 2013) conducted by Common Sense Media, it was found that there had been a fivefold increase in tablet ownership in families with children aged 8 and under, from 8% in 2011 to 40%. The study surveyed 1,463 parents of children aged 8 and under and found that in 2013, 75% of these children had access to a smart device such as a smartphone and/or tablet. A similar number of these young children was found to use a mobile device for media activity such as watching videos or using apps. The research also found that the percentage of children under 2 years of age using mobile devices for media consumption had increased from 10% in 2011 to 38% in 2013. Children from lower-income families also had much better access to mobile devices, up from 22% in 2011 to 65% in 2013. The increase in access to digital technology, in particular mobile devices for young children means that by the time they begin schooling, many children would have explored technology and developed technology skills through manipulating games and processing information while viewing videos or interacting with educational apps, and socialising by chatting with grandparents and relatives through Skype, Facetime or equivalents.
The increase in accessibility to and convenience in using smart mobile devices for services enabled by the capabilities listed in Table 1 make them increasingly important in our lives. As Kelly and Minges state:
Given technological convergence, mobile handsets can now function as a wallet, camera, television, alarm clock, calculator, address book, calendar, newspaper, gyroscope, and navigational device combined. The latest smartphones are not just invading the computer space, they are reinventing it by offering so much more in both voice and nonvoice services.
(Kelly & Minges, 2012, p. 4)
Educators and policy makers are acknowledging that as part of this integration of smart mobile devices in people’s lives, schools and higher education should capitalise on their capabilities and students’ familiarity with the technology to innovate learning with these devices (New South Wales Department of Education and Communities (NSWDEC), n.d.). One challenge is designing a response to the rapidly changing technical landscape that we have described in this section. One response can be seen in the bring-your-own-device (BYOD) concept, which is being explored globally in education institutions. In the BYOD approach we are beginning to see a shift in the mobile learning paradigm from single platform-based mobile technology use to multi-platform devices with non-uniform capabilities being adopted by schools and higher education institutions. The development of such a diverse strategy has the capacity to make innovation more financially sustainable (schools pay less for the technology itself), but in other aspects more difficult to sustain (more complex support and more challenges for teachers). We explore this issue below as an example of how sustainability can be operationalised and possibly also achieved, but first we set the scene with a discussion of learning with mobile devices and the challenges in sustaining programs where mobile devices are used.

Mobile learning

While the literature on mobile learning has increased significantly in the last ten years to reflect the interest in integrating mobile learning into education (see literature reviews of Hwang & Tsai, 2010, 2011; Ng & Nicholas, 2013; Petrova & Li, 2009; Wu et al., 2012), there is no unified definition of the concept. Conceptualising mobile learning has varied. Some researchers have focused on access, mobility and support for learning in multiple locations without physical network connections (e.g. Georgiev, Georgieva, & Smrikarov, 2004; Parsons & Ryu, 2006). Others have used contexts, space and time to define mobile learning (Pachler, 2009; Sharples, Taylor & Vavoula, 2007), for example Pachler (2009) asserted that mobile devices enable users to “re-interpret their everyday life contexts as potential resources for learning” (p. 5). Other researchers have emphasised the capacity to bridge formal and informal contexts and the related potential ubiquity of mobile learning (e.g. Clough et al., 2009; Evans, 2008; Goodchild & Chenery-Morris, 2011; Kukulska-Hulme et al., 2009; Looi et al., 2010). Traxler (2007) asser...

Table of contents

  1. Cover
  2. Half Title Page
  3. Series
  4. Title Page
  5. Copyright Page
  6. Contents
  7. List of figures and tables
  8. Contributors
  9. Foreword by Professor John Traxler
  10. Preface
  11. 1 Sustaining innovation in learning with mobile devices: Key challenges
  12. 2 Sustaining the unsustainable: Reframing global learning for the twenty-first century
  13. 3 Waypoints along learning journeys in a mobile world
  14. 4 Professional development for sustaining a mobile learning-enabled curriculum
  15. 5 Sustaining mobile learning at a personal level: Mobile digital literacy
  16. 6 Supporting sustainability and innovation of mobile learning in a UK higher education institution
  17. 8 Sustaining learning with mobile devices through educational design for teaching presence
  18. 9 Sustaining mobile learning with pervasive game: An example of cultural history exploration
  19. 10 Augmented reality: Sustaining iPad-facilitated visualisation pedagogy in nursing
  20. 11 Achieving sustainable mobile learning through student-owned devices and student-generated multimedia content
  21. Index