Media and the Ecological Crisis
  1. 206 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub
Book details
Book preview
Table of contents
Citations

About This Book

Media and the Ecological Crisis is a collaborative work of interdisciplinary writers engaged in mapping, understanding and addressing the complex contribution of media to the current ecological crisis. The book is informed by a fusion of scholarly, practitioner, and activist interests to inform, educate, and advocate for real, environmentally sound changes in design, policy, industrial, and consumer practices. Aligned with an emerging area of scholarship devoted to identifying and analysing the material physical links of media technologies, cultural production, and environment, it contributes to the project of greening media studies by raising awareness of media technology's concrete environmental effects.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Media and the Ecological Crisis by Richard Maxwell, Jon Raundalen, Nina Lager Vestberg, Richard Maxwell, Jon Raundalen, Nina Lager Vestberg in PDF and/or ePUB format, as well as other popular books in Languages & Linguistics & Communication Studies. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2014
ISBN
9781134627363
Edition
1
Part I
New Media Materialism

1
Powering the Digital

From Energy Ecologies to Electronic Environmentalism
Jennifer Gabrys
Electronics and all that they plug into are energy intensive. An increasing amount of energy (and resulting carbon emissions) is required to power everything from Google searches to spam and text messages, which in turn involve a vast range of resources including data centers, digital devices, and fiber optic cabling to connect and transmit information. Varying estimates place the quantity of energy consumed to power digital devices and networks at around 1.5 to 2 percent worldwide between 2008 and 2011. This is a quantity roughly similar to the aviation industry, and is expected to grow to 3 percent of total world energy use by 2020.1 Fossil fuels in the form of coal and oil provide a primary proportion of the energy consumed by electronics and their networks, because these continue to be the main sources of energy worldwide.2 Indeed, data centers, as Greenpeace notes, could be seen as the “factories” of modern-day economies, because 50 to 80 percent of the electricity used to power data centers is obtained from coal.3
The material and media ecologies that connect up coal to data and devices are disparate and do not significantly register at the point of using digital technologies. Yet energy is used not just to power data centers, but also for air conditioning to keep servers from overheating, to power numerous electronic technologies that connect up to data centers, and to manufacture devices in the first place. Energy then contributes to powering devices and their networks, and to the energy needed to produce machines, which is a highly energy-intensive process. Because the manufacture of electronics now principally takes place in countries such as China, Taiwan, and India, a considerable amount of the energy used to manufacture electronics is also generated from coal. Eric Williams has explained that over their lifecycle, electronics are “probably the most energy intensive of home devices aside from furnaces and boilers.”4 The energy to manufacture, power, and connect electronics is consumed in quantities that are far more abundant than these seemingly immaterial devices imply. Indeed, if one were to account for all the energy used to manufacture, power, connect, cool, maintain, and eventually recycle and dispose of electronics, estimates of electronics-related energy use would increase even further. To date, however, estimates of energy use have largely focused on the manufacture and use of devices and networks.
In this chapter, I consider how electronics generate distinct materializations and media ecologies through distributions, use, and arrangements of energy.5 The energy required to power electronics and their networks is a seemingly immaterial but operative aspect of digital technologies as an industry. Yet as electronics become pervasive and supplant non-digital media and exchanges such as books and social networking, and as computing becomes ubiquitous so that new forms of “smartness” are embedded in environments, questions emerge related to what types, quantities, and distributions of energy resources are required to power these digital worlds.
First, I discuss the amount and type of energy that electronics consume as a form of (electronic) waste, and I further take up a consideration of how electronics have become central operators in managing energy use in order to achieve sustainability. The smart meter is the emblematic technology for achieving energy efficiency, but a whole host of digital devices, apps, smart grids, and assorted technologies have been developed to address issues of energy consumption in relation to climate change. In what ways are the materialities of energy articulated and experienced, whether through the relatively remote infrastructures of energy in the form of data centers and manufacturing sites; or in the form of technologies to manage energy use? In what ways do digital technologies mobilize, distribute, materialize, and activate energy practices and relations?
Second, I attend to the ways in which energy efficiency is operationalized through electronics, while also asking in what ways practices of consuming or rerouting energy use through electronics raise questions that go beyond efficiency. Estimates of energy used to power electronics are significant in one sense because they are an indication of the material immaterialities of electronics and their networks, which operate seemingly free of resources. In another sense, the energy required to power electronics results in distinct forms of pollution that are different from the stacks of abandoned digital devices often associated with electronic waste. The material fallout from electronic energy registers in different ways, both in the resources used to power these devices and in the embedded energy used to manufacture them: through carbon footprints, coal dust, greenhouse gas emissions, and extensive land use taken up with data centers (and power plants).
In many cases, information technologies are now promoted as devices that help to achieve efficiencies within any number of processes, from energy supply and distribution to urban transport. Digital technologies appear to be green because they seem more immaterial, and because they can make processes more efficient. Together with the proliferation of personal mobile and computing devices, there is projected to be a massive increase in the number of smart technologies, such as energy meters and smart grids, that will ostensibly be directed toward making systems more efficient and environmentally sound. These developments raise real dilemmas as to what “green technology” means: can a technology be green if it is hazardous in its manufacture, prone to obsolescence, and difficult to dispose; and can a technology be green if it is largely powered by coal energy and contributes to increasing carbon emissions?
By focusing on the ways in which energy use and management is articulated through digital technologies, specifically the smart meter, I develop the concept of electronic environmentalism in order to attend to the ways in which digital technologies have become central to how we identify and act on environmental problems to arrive at potential solutions—and what the effects of these distinctly digital approaches may be. On the one hand, what I am calling electronic environmentalism emerges as a way of using electronic technologies to monitor and manage energy use, while also supplanting potentially more carbon-intensive activities with energy-saving virtual parallels, for instance, teleconferencing rather than flying to a meeting. On the other hand, the mostly remote infrastructures of energy and material resource use that support these electronic activities show up in the form of data centers, as well as the vast array of related infrastructures from manufacturing to disposal sites, that make the extensive materiality and resource footprints of electronics less evident. Electronics are developed to achieve environmental targets, and along the way, electronics generate new environmental problems. Electronic environmentalism is a term that captures and analyzes how digital approaches to managing environmental problems are entangled with distinct material politics, effects, and concerns.

Transforming the Material Politics (and Ecologies) of Digital Pollution

While energy use contributes to the material resource use and waste of electronics, the residues from digital devices also include everything from discarded electronics at end-of-life to resource-intensive manufacturing processes, information overload, and software obsolescence. I have previously written about these other forms of electronic waste in the study Digital Rubbish, where I developed a material method, or “natural history” approach, to rematerializing electronics by focusing on the ways in which they generate waste. Electronic waste is one of the fastest growing waste streams worldwide, and the volumes of e-waste generated are estimated to be between 20–25 million tons per year to 35–40 million tons per year (and rising).6 Electronic waste is hazardous and difficult to recycle at end-of-life, and is often processed in harmful ways, which raises considerable environmental justice issues. Lead, mercury, and brominated flame-retardants are just a few of the harmful chemical-material components that make up electronics.7 Electronics also require and generate hazardous waste products during their manufacture, and the working conditions of electronics manufacturing and recycling are typically harmful to human health.
Yet there continues to be a widespread sense that digital media are relatively resource-free technologies, and that they may even promote a green lifestyle by using fewer resources than analog equivalents, or through ongoing monitoring of consumption activities. Although digital technologies appear to be immaterial, as the environmental issue of electronic waste indicates, the material effects of digital media are significant. But what do I mean by material effects? What is the material life of digital media? Materiality here does not signal a sort of rawness, hardness, or physical evidence of material, as some writers may emphasize, but instead refers to processes whereby materialities cohere and stabilize, and so inform our ways of life, as well as everyday practices and relations. While electronic waste demonstrates the materiality of digital media, it signals not the fact of all that is solid in contrast to the apparently virtual movement of information. Materials are not simply hard or raw or inert stuff. Instead, electronic waste demonstrates the processes of materialization that digital media are entangled with. These processes include our contemporary material cultures of technological fascination, repetitive cycles of consumption, built-in obsolescence, poor resource use, and labor inequalities, in addition to environmental pollution.
A practice of taking into account the material effects of digital technologies is not simply a matter of tabulating a life-cycle analysis, where physical inputs and outputs are added up and assessed for damages to be remedied, but rather requires attending to the relations, practices, and inhabitations that are put in place through these material arrangements. So what does this processual approach to materiality afford? An approach to materiality as process is important not just for understanding the environmental and socio-cultural effects of digital media, but also for rethinking the material politics and ecologies of these technologies, and for developing possible sites and strategies for creative intervention.8 To discuss electronic waste as an environmental issue, it would then be necessary to include the complex material cultures of digital technologies, including the apparently virtual or immaterial qualities of those technologies, the environmental health and unfair working conditions that are a part of their manufacture, the digital economies that revolve around increasing rates of electronics consumerism and obsolescence, and the accumulation of discards and environmental fallout that comes with the decay of these technologies at end-of-life.
The case of energy as a form of electronic waste raises related yet distinct issues concerning the materiality of electronics. While all of these processes are critical issues for addressing the ways in which electronic technologies generate complex material ecologies and economies, yet another aspect of “digital rubbish” is the increasing amount of energy (and resulting carbon emissions) required to power electronics in the form of devices, networks, and processes. Energy from electronics constitutes distinct types of material processes and waste in the form of distant resource use and airborne emissions, which contribute to the heat of a warming planet.
The specific ways in which electronics might be identified to generate waste in the form of energy are often told through the tool of the carbon footprint, where a Google search has been calculated to generate carbon emissions between 0.2 grams and 7 grams of CO2,9 while an average spam email generates “emissions equivalent to 0.3 grams of carbon dioxide (CO2) per message.” Multiplied by 62 trillion spam emails sent in 2008, and this cumulative amount of emissions from spam is equivalent to “driving around the Earth 1.6 million times.”10 Whereas each individual search, page use, or email sent might have a comparatively small resource or greenhouse gas footprint, the amounts of data sent, received, stored, and otherwise processed contributes to overall energy use and emissions of considerable quantities.
Attempting to demonstrate the increasing demand for energy needed to power and connect up digital technologies, these carbon footprints make evident the resource requirements of seem...

Table of contents

  1. Cover
  2. Title
  3. Copyright
  4. Contents
  5. Acknowledgements
  6. Introduction: Media Ecology Recycled
  7. PART I New Media Materialism
  8. PART II New Media Ecology
  9. Contributors
  10. References
  11. Index