Eco Crime and Genetically Modified Food
eBook - ePub

Eco Crime and Genetically Modified Food

  1. 176 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Eco Crime and Genetically Modified Food

Book details
Book preview
Table of contents
Citations

About This Book

The GM debate has been ongoing for over a decade, yet it has been contained in the scientific world and presented in technical terms. Eco Crime and Genetically Modified Food brings the debates about GM food into the social and criminological arena.

This book highlights the criminal and harmful actions of state and corporate officials. It concludes that corporate and political corruption, uncertain science, bitter public opposition, growing farmer concern and bankruptcy, irreversible damage to biodervisty, corporate monopolies and exploitation, disregard for social and cultural practices, devastation of small scale and local agricultural economies, imminent threats to organics, weak regulation, and widespread political and biotech mistrust – do not provide the bases for advancing and progressing GM foods into the next decade. Yet, with the backing of the WTO, the US and UK Governments march on – but at what cost to future generations?

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Eco Crime and Genetically Modified Food by Reece Walters in PDF and/or ePUB format, as well as other popular books in Derecho & Teoría y práctica del derecho. We have over one million books available in our catalogue for you to explore.

Information

Year
2010
ISBN
9781136918124

Chapter 1
The politicisation of GM

Terrain, terms and concepts

Introduction

The globalisation of food has changed the way we eat and shop. A visit to any supermarket across the UK in mid-winter may result in the purchase of Shamouti oranges from Israel; savoy cabbage from France; Angeleno plums from Australia; alpine nectarines from South Africa; aromatic ginger from Brazil; asparagus tips from Peru; freshly picked blueberries from Poland; onions from Argentina; bananas from Cameroon; beans from Zambia; and so on. Such purchases have become routine daily consumer practice. Food is a global industry where items from around the world are transported swiftly to our supermarket shelves or discarded all in the name of ‘consumer choice’ and ‘freshness’. Consider the following advertising of Upper Crust, a multi-national baguette and coffee chain established in 1986:
Fanatical about freshness! We are obsessed with ensuring you get the freshest baguette around that’s why after 3 hours we throw them away. We believe we are the only people that do this. That’s how fanatical we are.
So much for the world’s starving! In the affluent West, perfectly edible ‘three hour old food’ can be discarded as waste. There is nothing new in this. It has been estimated that the United States wastes up to 50 per cent of its overall food supply (Harrison, 2004). In Britain alone, it is estimated that discarded food in households, supermarkets and restaurants could possibly feed 113 million people annually (Stuart, 2009). While some of this wastage is related to health and safety regulations and household excess, it is also about corporate profit and the marketing of freshness and consumer choice. It is only recently that leading supermarket chains have begun to utilise their food waste for renewable energies and biofuels (Stiff and Ford, 2009).
Foods from near and far fill our supermarket trolleys, stack the pantries of our ‘global kitchens’ often within a non-critical and hedonistic vacuum. Yet, the production of food is an industry rife with illegal and harmful actions. As a result, ‘food crime’ is an emerging area of criminological scholarship (Croall, 2006; Walters, 2007). The pollution created from long-distance transportation, the erosion of soils, the sale of contaminated meat, the illegal use of chemicals, the exploitation of farm workers, the use of fraudulent marketing practices and the aggressive trade policies of governments and corporations are some of the areas involving unethical and illegal behaviour in Britain and abroad (Mathieson, 2006; Lawrence, 2004; Lang and Heasman, 2004). Such issues have found a voice in discourses on food security and regulation but little has been written in criminology. Unlawful food trading practices have been constructed within notions of risk and presented as food scandals and not food crimes. This book aims to redress the focus by concentrating on one area of the food crime debate, namely the use of genetics in food production or what is now commonly referred to as GM food. It examines the political economy of GM food within criminological contexts of state, corporate and transnational crime (Green and Ward, 2004; Tombs and Whyte, 2003; Ruggerio, 2000), and within discourses of harm (Hillyard et al., 2004).
Elsewhere, I have explored the use of genetics in food production and examined the exploitation of hunger, the monopolisation of GM technologies and the aggressive trade policies of Western governments and corporations (see Walters, 2004 and 2006). This book further examines global dimensions to GM food through an examination of ‘eco crime’. In doing so, we need to move beyond what Bruno Latour refers to a ‘punctionlist’ assessment of our food production to one that investigates broader networks of connectivity (discussed later).

GM foodterms, definitions and techniques

Before embarking upon a discussion of what we do and don’t know about the risks, harms and potential benefits of GM food, it is important to establish what is and what is not genetically modified food. It is widely acknowledged that human beings have been involved in selective and natural breeding of plants and animals for thousands of years. However, it was not until the Darwin-inspired Augustinian monk Gregor Mendel’s 1866 work with garden peas, bees and mice that the scientific world was presented with the ‘laws of genetic inheritance’. Through breeding round with wrinkled peas and peas from green pods with those from yellow ones, he was able to ascertain that colour, height and shape are determined by certain dominant or recessive factors, subsequently called genes (Orel, 1996).
The subsequent developments in biotechnology and plant genetics have been well documented elsewhere (see Bud, 1994; Lurquin, 2002; Federoff and Brown, 2004). It is a history that conveys, inter alia, the exploits of scientists and their quest to understand theories of natural and artificial selection, the laws of inheritance, the chemical processes of chromosomal combinations as well as the yet unsolved mysteries of apomictic or asexual reproduction in plants and animals. From Louis Pasteur’s nineteenth century discoveries with microbes and fermentation to Berg and Boyer’s work with insulin and to enzyme cultures for dairy produce, genetic knowledge has been used to advance scientific, medical and food technologies. That said, it was not until 1983 that tobacco became the first fully transgenic plant to successfully grow with ‘foreign genes’. Moreover, while field trials of GM crops had occurred throughout Europe and the North America during the late 1980s and early 1990s, it was not until 1994 that the first GM food product was approved for public consumption. The long-life tomato (Flavr Savr) was developed by Calgene and accepted by the US Food and Drug Administration. While lacking commercial success, it provided the impetus for commercial farming of GM potatoes, soybean and canola that were resistant to insects and fungal diseases (Paarlberg, 2001).
Genetic engineering or modification is a scientific process designed to manipulate the genetic makeup of cells. It involves the unnatural alteration of DNA and RNA from one organism and its transfer into the cells of another organism. Genetically modified organisms (GMO) may be animals, plants or micro-organisms such as bacteria and viruses. For some scholars, genetic modification is so ‘anatural’, that it should be termed ‘genetic mutilation’ (see Ho, 1998; Anderson, 2004).
The unnatural character of genetically modified organisms was determined in the pivotal 5:4 decision in the United States Supreme Court case of Diamond v Chakrabarty [1980]. Chakrabarty, a microbiologist, invented a genetically engineered bacterium capable of breaking down various components of crude oil in the event of an oil spill. His application to the Patent and Trademark Office to patent his genetically modified bacteria was declined on the basis that naturally occurring living organisms could not be patented. The US Supreme Court disagreed on the grounds that a genetically modified bacteria was not a naturally occurring phenomena but a product of human invention and as such could be patented. The court argued that:
a new mineral discovered in the earth or a new plant found in the wild is not patentable subject matter. Likewise, Einstein could not patent his celebrated law that E = mc2; nor could Newton have patented the law of gravity. Such discoveries are ‘manifestations of nature, free to all men and reserved exclusively to none.’ Judged in this light, the respondent’s micro-organism plainly qualifies as patentable subject matter. His claim is not to a hitherto unknown natural phenomenon, but to a non-naturally occurring manufacture or composition of matter – a product of human ingenuity having a distinctive name, character.
Not only did this decision provide a legal definition of GMOs as non-natural in character but also provided the legal basis upon which biotech corporations could develop and patent their organisms (Hughes et al., 2002).
Similar definitions of GMOs to that established in the above case were adopted in the first Royal Commission on Genetic Modification which defined genetic modification as the ‘use of genetic engineering techniques in a laboratory, being a use that involves’:
the deletion, multiplication, modification, or moving of genes within a living organism; or
the transfer of genes from one organism to another; or
the modification of existing genes or the construction of novel genes and their incorporation in any organism; or
the utilisation of subsequent generations or offspring of organisms modified by any of the activities described above
(Royal Commission on Genetic Modification, 2001: 366).
This definition is reflected in the UK Environmental Protection Act (1990) as Part VI defines a genetically modified organism when:
any of the genes or other genetic material in the organism (a) have been modified by means of an artificial technique prescribed in regulations by the Secretary of State; or (b) are inherited or otherwise derived, through any number of replications, from genes or other genetic material which were so modified.
It is also reflected in European Environmental Law at Article 2 of the Deliberate Release Directive 90/220 which defines genetic modification organisms as those that do not ‘occur naturally by mating and/or natural recombination’. Therefore, both national and international law has asserted the artificial and human intervention aspects to GMOs that emphasise unnatural characteristics of these organisms and the manipulative processes that produce them.
Various techniques and processes are used to achieve the desired genetic alteration of a plant. Gene guns were developed in the 1980s to physically transfer DNA particles from one organism or culture. This method has been advanced with the use of ‘marker genes’ that identify the transferred DNA and permit more systematic tracking of gene performance. These antibiotic resistant marker genes are used to control the functioning of ‘foreign genes’ and bring with them their own risks and uncertainties (Nottingham, 2003). The gene altered state of a commercially grown crop is intended to make it both herbicide tolerant and insect resistant. Herbicide tolerant plants can flourish while all other surrounding plants (mostly weeds) are destroyed by poisonous sprays such as ‘Roundup’ produced by Monsanto and Bayer-Aventis’ ammonium gluphosinate herbicide (Toke, 2004). Insect resistant crops (often referred to as Bt crops after the bacterium bacillus thuringiensis) secrete a toxin that kills various species of predatory insects. With the threat of weeds and bugs eliminated by the self-defences of the GM crop, the yield of the harvest is maximised. The creation of herbicide tolerant and insect resistant plants occurs from the insertion of a ‘foreign’ gene into the chromosomal make-up of a crop seed. For many, like the agricultural biotech giant Monsanto, this process is simply an extension of traditional plant breeding. Monsanto claims that genetic manipulation in the human food chain is not new. For example, Monsanto’s website states:
[w]hat has come to be called ‘biotechnology’ and the genetic manipulation of agricultural products is nothing new. Indeed, it may be one of the oldest human activities. For thousands of years, from the time human communities began to settle in one place, cultivate crops and farm the land, humans have manipulated the genetic nature of the crops and animals they raise. Crops have been bred to improve yields, enhance taste and extend the growing season.
(Monsanto, 2006a)
The Monsanto interpretation of GM plant technologies as ‘nothing new’ is misleading (see Leeder, 1999). To suggest that GM plant technology is an ‘extension’ of traditional breeding is akin to saying that nuclear power is merely a hybrid of solar energy. As mentioned above, the scientific process of genetic modification differs from traditional forms of plant breeding in that ‘foreign’ genes are inserted into the DNA make-up of plants and animals. Traditional plant breeding occurs through the trial and error of cross genetic experimentation from the same gene pool. The genes of the same species of plants are mixed to create hybrids with newly created characteristics. With GM technologies the new or desirable traits or characteristics are achieved through inserting alien genes from a different species of animal or plant. It is this insertion of a foreign gene into an organism that has produced uncertainty and controversy as the biochemical and physiological effects remain unknown.
In Britain, GM food technologies operate in ‘contained use’ (laboratories that require secure access) where control measures are designed to enhance human safety environment protection. Such scientific measures involve ‘the insertion of genes into micro-organisms that have been deliberately “crippled” with disabling mutations so that they will not grow outside of the controlled environment of a laboratory test tube’ (Health and Safety Executive, 2006 – see also chapter five). While GM crops have been grown for research and development at undisclosed sites in England since 1993, as yet, there are no commercially grown GM crops in the UK (Defra, 2009c). However, GM derivatives in flour, oil, soya, yeast and dairy are contained in a variety of supermarket products and available to British consumers.

Corporate power and monopoly capitalism

While ‘consumer choice’ in the UK dictates the trade policies that bring out-of-season produce from around the world to our supermarket shelves, such notions of choice are less available when it comes to the stores from which food can be purchased. In March 2006, the consumer watchdog, The Office of Fair Trading, responded to the Federation of Small Businesses’ concerns by proposing to refer Tesco, Asda, Morrisons and Sainsbury’s to the Consumer Commission for a formal inquiry into their ‘monopoly position’. In 2007, the Competition Commission identified how a number of these leading UK supermarket outlets were squeezing farmers and factory owners (often in poor and developing countries where £7 million a day is generated for UK supermarkets), in what has been identified as ‘unfair trade’ and ‘abusing buying power’ (Melamed, 2007; Competition Commission, 2008). Moreover, the European Parliament has stated that supermarkets across the EU have been abusing their positions to fix prices, resulting in the UK Competition Commission to call for tougher regulations (Attwood, 2008). In addition, the UK Competition Commission has since appointed a ‘Supermarket Ombudsman’ to address the ‘buying power’ of leading supermarkets that is ‘not in the public interest’ (Competition Commission, 2009).
In Britain, £95 billion per annum is spent on grocery shopping constituting 13 per cent of total spending for each household (Office of Fair Trading, 2008). The supermarket industry in the UK, dominated by the ‘big four’, has become an example of corporate power and market capitalism. The Competition Act 1998 is intended to prevent market control and promote economic diversity. The detriments to consumers of monopoly capitalism in Britain’s major supermarket chains was recently realised with the Office of Fair Trading having Sainsbury’s and Asda confess to the price fixing of milk (BBC, 2007).
With the production of GM products controlled by a diminishing number of GM biotech giants, we are witnessing a growing form of ‘monopoly capitalism’ (Walters, 2006: 35). The aggressive corporate policies of control are openly acknowledged by the directors of the biotech industries. Mr Rob Fraley, from DuPont stated that ‘what we are seeing is not just a consolidation of seed companies, it’s really a consolidation of the entire food chain’ (quoted in Assouline et al., 2001: 30). Such monopoly capitalism infringes human rights and international trade law (see Cottier et al., 2005) and is in direct opposition to the competitive and free trade policies of the WTO. Yet, it is in the WTO that the US Government sought rulings for the ongoing biotech hegemony in world food trade (discussed later).
The overwhelming majority of GM food and its accompanying fertilisers, seeds and herbicides are produced from four chemical corporations, namely Monsanto, Syngenta, DuPont and Bayer (see Nottingham, 2003). Clearly GM food and genetic engineering remain big business. Yet free-trade ideologies espoused by the WTO to enhance notions of competitive capitalism are compromised by a status quo of monopoly capitalism. The costs to consumers and industries when market dominance is controlled by a select number of large conglomerates has been examined in discourses of corporate or ‘elite’ deviance for some time (Simon and Eitzen, 1990; see also Tombs and Whyte, 2003). Such discourses remain important for understanding the inherent dangers of market control, particularly in developing societies where economic vulnerabilities create opportunities for corporate exploitation. The lucrative global trade for governments and the four GM giants are essential for understanding pressures, unethical and illegal actions discussed later in relation to Zambia. As Winston (2002: 174) argues, ‘genetically modified organisms would be only an interesting academic sideli...

Table of contents

  1. Contents
  2. Acknowledgements
  3. Introduction
  4. Chapter 1 The politicisation of GM
  5. Chapter 2 The perils, prospects and controversies of GM food
  6. Chapter 3 Risk, public opinion and consumer resistance
  7. Chapter 4 Biotech, papal and trade ‘wars’
  8. Chapter 5 Regulatory regimes
  9. Chapter 6 Green criminology
  10. Reflections and conclusions
  11. Appendix Methodological considerations
  12. Bibliography
  13. Index