Interconnection Networks
eBook - ePub

Interconnection Networks

  1. 624 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Interconnection Networks

Book details
Book preview
Table of contents
Citations

About This Book

The performance of most digital systems today is limited by their communication or interconnection, not by their logic or memory. As designers strive to make more efficient use of scarce interconnection bandwidth, interconnection networks are emerging as a nearly universal solution to the system-level communication problems for modern digital systems.

Interconnection networks have become pervasive in their traditional application as processor-memory and processor-processor interconnect. Point-to-point interconnection networks have replaced buses in an ever widening range of applications that include on-chip interconnect, switches and routers, and I/O systems.

In this book, the authors present in a structured way the basic underlying concepts of most interconnection networks and provide representative solutions that have been implemented in the industry or proposed in the research literature.* Gives a coherent, comprehensive treatment of the entire field* Presents a formal statement of the basic concepts, alternative design choices, and design trade-offs* Provides thorough classifications, clear descriptions, accurate definitions, and unified views to structure the knowledge on interconnection networks* Focuses on issues critical to designers

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Interconnection Networks by Jose Duato,Sudhakar Yalamanchili,Lionel Ni in PDF and/or ePUB format, as well as other popular books in Computer Science & Computer Networking. We have over one million books available in our catalogue for you to explore.

Information

Year
2002
ISBN
9780080508993
CHAPTER 1

Introduction

Interconnection networks are currently being used for many different applications, ranging from internal buses in very large-scale integration (VLSI) circuits to wide area computer networks. Among others, these applications include backplane buses and system area networks; telephone switches; internal networks for asynchronous transfer mode (ATM) and Internet Protocol (IP) switches; processor/memory interconnects for vector supercomputers; interconnection networks for multicomputers and distributed shared-memory multiprocessors; clusters of workstations and personal computers; local area networks; metropolitan area networks; wide area computer networks; and networks for industrial applications. Additionally, the number of applications requiring interconnection networks is continuously growing. For example, an integral control system for a car requires a network connecting several microprocessors and devices.
The characteristics and cost of these networks depend considerably on the application. There are no general solutions. For some applications, interconnection networks have been studied in depth for decades. This is the case for telephone networks, computer networks, and backplane buses. These networks are covered in many books. However, there are some other applications that have not been fully covered in the existing literature. This is the case for the interconnection networks used in multicomputers and distributed shared-memory multiprocessors.
The lack of standards and the need for very high performance and reliability pushed the development of interconnection networks for multicomputers. This technology was transferred to distributed shared-memory multiprocessors, improving the scalability of those machines. However, distributed shared-memory multiprocessors require an even higher network performance than multicomputers, pushing the development of interconnection networks even more. More recently, this network technology began to be transferred to local area networks (LANs). Also, it has been proposed as a replacement for backplane buses, creating the concept of a system area network (SAN). Hence, the advances in interconnection networks for multicomputers are the basis for the development of interconnection networks for other architectures and environments. Therefore, there is a need for structuring the concepts and solutions for this kind of interconnection network. Obviously, when this technology is transferred to another environment, new issues arise that have to be addressed.
Moreover, several of these networks are evolving very quickly, and the solutions proposed for different kinds of networks are overlapping. Thus, there is a need for formally stating the basic concepts, the alternative design choices, and the design trade-offs for most of those networks. In this book, we take that challenge and present in a structured way the basic underlying concepts of most interconnection networks, as well as the most interesting solutions currently implemented or proposed in the literature. As indicated above, the network technology developed for multicomputers has been transferred to other environments. Therefore, in this book we will mainly describe techniques developed for multicomputer networks. Most of these techniques can also be applied to distributed shared-memory multiprocessors and to local and system area networks. However, we will also describe techniques specifically developed for these environments.

1.1 Parallel Computing and Networks

The demand for even more computing power has never stopped. Although the performance of processors has doubled in approximately every three-year span from 1980 to 1996, the complexity of the software as well as the scale and solution quality of applications have continuously driven the development of even faster processors. A number of important problems have been identified in the areas of defense, aerospace, automotive applications, and science, whose solutions require a tremendous amount of computational power. In order to solve these grand challenge problems, the goal has been to obtain computer systems capable of computing at the teraflops (1012 floating-point operations per second) level. Even the smallest of these problems requires gigaflops (109 floating-point operations per second) of performance for hours at a time. The largest problems require teraflops performance for more than a thousand hours at a time.
Parallel computers with multiple processors are opening the door to teraflops computing performance to meet the increasing demand of computational power. The demand includes more computing power, higher network and input/output (I/O) bandwidths, and more memory and storage capacity. Even for applications requiring a lower computing power, parallel computers can be a cost-effective solution. Processors are becoming very complex. As a consequence, processor design cost is growing so fast that only a few companies all over the world can afford to design a new processor. Moreover, design cost should be amortized by selling a very high number of units. Currently, personal computers and workstations dominate the computing market. Therefore, designing custom processors that boost the performance one order of magnitude is not cost-effective. Similarly, designing and manufacturing high-speed memories and disks is not cost-effective. The alternative choice consists of designing parallel computers from commodity components (processors, memories, disks, interconnects, etc.). In these parallel computers, several processors cooperate to solve a large problem. Memory bandwidth can be scaled with processor computing power by physically distributing memory components among processors. Also, redundant arrays of inexpensive disks (RAID) allow the implementation of high-capacity reliable parallel file systems meeting the performance requirements of parallel computers.
However, a parallel computer requires some kind of communication subsystem to interconnect processors, memories, disks, and other peripherals. The specific requirements of these communication subsystems depend on the architecture of the parallel computer. The simplest solution consists of connecting processors to memories and disks as if there were a single processor, using system buses and I/O buses. Then, processors can be interconnected using the interfaces to local area networks. Unfortunately, commodity communication subsystems have been designed to meet a different set of requirements, that is, those arising in computer networks. Although networks of workstations have been proposed as an inexpensive approach to build parallel computers, the communication subsystem becomes the bottleneck in most applications.
Therefore, designing high-performance interconnection networks becomes a critical issue to exploit the performance of parallel computers. Moreover, as the interconnection network...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. About the Authors
  5. Copyright
  6. Dedication
  7. Foreword
  8. Foreword to the First Printing
  9. Preface
  10. Chapter 1: Introduction
  11. Chapter 2: Message Switching Layer
  12. Chapter 3: Deadlock, Livelock, and Starvation
  13. Chapter 4: Routing Algorithms
  14. Chapter 5: Collective Communication Support
  15. Chapter 6: Fault-Tolerant Routing
  16. Chapter 7: Network Architectures
  17. Chapter 8: Messaging Layer Software
  18. Chapter 9: Performance Evaluation
  19. Appendix A: Formal Definitions for Deadlock Avoidance
  20. Appendix B: Acronyms
  21. References
  22. Index