Handbook of Multiphase Flow Assurance
eBook - ePub

Handbook of Multiphase Flow Assurance

  1. 490 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Handbook of Multiphase Flow Assurance

Book details
Book preview
Table of contents
Citations

About This Book

Handbook of Multiphase Flow Assurance allows readers to progress in their understanding of basic phenomena and complex operating challenges. The book starts with the fundamentals, but then goes on to discuss phase behavior, fluid sampling, fluid flow properties and fluid characterization. It also covers flow assurance impedance, deliverability, stability and integrity issues, as well as hydraulic, thermal and risk analysis. The inclusion of case studies and references helps provide an industrial focus and practical application that makes the book a novel resource for flow assurance management and an introductory reference for engineers just entering the field of flow assurance.

  • Starts with flow assurance fundamentals, but also includes more complex operating challenges
  • Brings together cross-disciplinary discussions and solutions of flow assurance in a single text
  • Offers case studies and reference guidelines for practical applications

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Handbook of Multiphase Flow Assurance by Taras Y. Makogon in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Renewable Power Resources. We have over one million books available in our catalogue for you to explore.
Chapter 1

Introduction

Abstract

Flow assurance aims to make sure oil and gas keep flowing. To achieve that goal, flow assurance relies on the analysis of multiphase flow and on the selection and use of production chemicals. Flow assurance engineers commonly analyze the flow of oil and gas in wells, production flowlines, process facilities and export pipelines. Complex networks of gathering lines feeding into trunk flowlines exist in onshore and offshore fields, and the analysis to optimize flow routing through such networks is equally complex.

Keywords

Multiphase; Flow assurance; Risk analysis; Process safety; Product value; Production
Flow assurance aims to make sure oil and gas keep flowing. To achieve that goal, flow assurance relies on the analysis of multiphase flow and on the selection and use of production chemicals. Flow assurance engineers commonly analyze the flow of oil and gas in wells, production flowlines, process facilities and export pipelines. Complex networks of gathering lines feeding into trunk flowlines exist in onshore and offshore fields, and the analysis to optimize flow routing through such networks is equally complex.
Definitions of flow assurance are numerous, including this one: Flow Assurance is the analysis of thermal, hydraulic and fluid-related threats to flow and product quality and their mitigation using equipment, chemicals and procedure.

Multiphase production problems: Blockages and restrictions

Oil and gas are currently produced through wells and pipelines. The lack of flow in wells and pipelines may be due to low reservoir pressure or productivity, due to complete blockages or due to partial restrictions.
Flow restrictions may happen in a reservoir, in a well production tubing or a tree, in a jumper between a well and a flowline, in a flowline, in a riser or in an export pipeline. In some cases, restrictions may happen in several locations simultaneously. The largest number I have seen is five blockages in the same production flowline at the same time. Restrictions may also occur in water and gas injection systems as in wells, flowlines or reservoirs.
Restrictions may be hydraulic, such as liquid accumulation also known as a holdup in flowlines and risers, liquid loading in wells, or mechanical such as a partly closed valve or a scraper. Restrictions or blockages may also be solid, including organic (e.g., paraffin wax), inorganic (scale) or particulate (sand). The hydraulic, mechanical or solid restrictions may be stationary such as the liquid holdup or moving such as the slugging. A flow assurance practitioner should be able to recognize the signs of and potential for any type of restriction and either economically design it out of a new system or mitigate it in an existing system.
In some cases, restrictions may lead to other restrictions. There is an early 2000s example from West Africa offshore production where a wax deposit in a flowline got scraped by a formed hydrate plug into a solid paraffin wax blockage. Similarly, combined hydrate-paraffin restrictions have also formed in the North Sea in the early 1990s and asphaltene-hydrate in the Gulf of Mexico in the 2010s. Paraffin-asphaltene-sand restrictions have been common in Siberian pipelines through the decades.
Modeling of multiphase flow can be done to find optimal conditions for a stable production of gas and hydrocarbon liquids with water. When the gas flow rate is not high enough to sweep the liquid hydrocarbons and liquid water from a well or a pipeline, these liquids accumulate in low spots because of gravity.
The liquids can accumulate either downhole in a vertical well or at a heel or a toe, whichever is lower, in a horizontal well which is known as liquid loading. Both deepwater and shale horizontal wells are susceptible to liquid loading.
Severe slugging is one of the issues in multiphase flow also related to gravity. Liquids can accumulate at a subsea riser base and then get periodically produced to a topsides separator after a sufficient gas pressure has built up behind the accumulated liquids as a large sudden gush of liquid preceded by a period of no or limited flow, which is known as severe slugging. Wells keep producing during severe slugging at a steady rate, but backpressure on wells may change noticeably between slug accumulation and displacement. Severe slugs keep repeating, and slug size and momentum are substantial as to cause vibration at pipe bends in flow geometry, overfill the process vessel or both.
Liquids also can accumulate in the low spots of a near-horizontal pipeline and get periodically displaced by a steady flow of gas, which leads to terrain slugging. Terrain slugs keep repeating and are usually smaller in size and don't overfill the process vessel but may cause vibration at pipe bends. Hydrodynamic slugging occurs as liquids holdup is displaced by an increasing flow of gas from a flowline in form of a liquid surge. If the surge volume is significant, the hydrodynamic slugs can be as detri...

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. Preface
  7. Chapter 1: Introduction
  8. Chapter 2: Initial diagnosis and solution of flow assurance production problems in operations
  9. Chapter 3: PVT and rheology investigation
  10. Chapter 4: Hydraulic and thermal analysis
  11. Chapter 5: Flow restrictions and blockages in operations
  12. Chapter 6: Production chemistry and fluid quality
  13. Chapter 7: Flow assurance deliverability issues
  14. Chapter 8: Flow assurance stability issues
  15. Chapter 9: Flow assurance integrity issues
  16. Chapter 10: Research methods in flow assurance
  17. Chapter 11: Toolkit
  18. Chapter 12: Flow assurance modeling
  19. Chapter 13: Risk analysis
  20. Chapter 14: Case studies/reference material
  21. Index