Smart Buildings Systems for Architects, Owners and Builders
eBook - ePub

Smart Buildings Systems for Architects, Owners and Builders

James M Sinopoli

Share book
  1. 248 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Smart Buildings Systems for Architects, Owners and Builders

James M Sinopoli

Book details
Book preview
Table of contents
Citations

About This Book

Smart Buildings Systems for Architects, Owners and Builders is a practical guide and resource for architects, builders, engineers, facility managers, developers, contractors, and design consultants. The book covers the costs and benefits of smart buildings, and the basic design foundations, technology systems, and management systems encompassed within a smart building. Unlike other resources, Smart Buildings is organized to provide an overview of each of the technology systems in a building, and to indicate where each of these systems is in their migration to and utilization of the standard underpinnings of a smart building.

Written for any professional interested in designing or building smart Buildings systems, this book provides you with the fundamentals needed to select and utilize the most up to date technologies to serve your purpose. In this book, you'll find simple to follow illustrations and diagrams, detailed explanations of systems and how they work and their draw backs. Case studies are used to provide examples of systems and the common problems encountered during instillation. Some simple Repair and Trouble shooting tips are also included. After reading this book, builders, architects and owners will have a solid understanding of how these systems work which of these system is right for their project. Concise and easy to understand, the book will also provide a common language for ensure understanding across the board. Thereby, eliminating confusion and creating a common understanding among professionals.

  • Ethernet, TCP/IP protocols, SQL datebases, standard fiber optic
  • Data Networks and Voice Networks
  • Fire Alarm Systems, Access Control Systems and Video Surveillance Systems
  • Heating, Ventilating and Air Conditioning Systems and Electric Power Management Systems, Lighting Control Systems
  • Facility Management Systems

Frequently asked questions

How do I cancel my subscription?
Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
Can/how do I download books?
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
What is the difference between the pricing plans?
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
What is Perlego?
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Do you support text-to-speech?
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Is Smart Buildings Systems for Architects, Owners and Builders an online PDF/ePUB?
Yes, you can access Smart Buildings Systems for Architects, Owners and Builders by James M Sinopoli in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Construction & Architectural Engineering. We have over one million books available in our catalogue for you to explore.
Chapter 1. What Is a Smart Building?

Brief History

Smart buildings, or at least discussion of the concept, originated in the early 1980s. In 1984, for instance, a New York Times article described real estate developers creating “a new generation of buildings that almost think for themselves … called intelligent buildings.” Such a building was defined as “a marriage of two technologies—old-fashioned building management and telecommunications.”
In the early 1980s, several major technology trends were under way. One was that the U.S. telecommunications industry was undergoing deregulation and new companies, products, services and innovations entered the telecom marketplace. The second major trend, which at the time seemed somewhat separate and unrelated, was the creation and emergence of the personal computer industry. This era also spawned the first real connection between real estate developers and technology. The newly unregulated telecommunications industry presented an opportunity for building owners to resell services within their facilities and add value to their business. This new business model was known as “shared tenant services.”
Under shared tenant services, the building owner procured a large telecommunications system for the entire building and leased telecommunication services to individual tenants. Major real estate developers offered such shared services but eventually abandoned such arrangements due to inadequate profitability and lack of knowledge and skills in telecommunications. It was, however, one of the first times that building owners thought about and acted on the idea of major technology systems in buildings.
In the next decade or so, there were some modest technological advancements in buildings, including structured cabling systems, audio visual systems, building automation controllers with direct digital control (DDC), conditioned space for network equipment, access control systems, and video surveillance, among others. Yet guidelines for building construction documents released in 1994, the Construction Specifications Institute's MasterFormat, had 16 divisions, barely mentioning technology. Many times engineers and designers used a “Division 17” for the specification of technology-related systems.
Division 17 was not a formal specification division but was used for materials and equipment not included in the other 16 divisions. During that time period a traditional mind-set prevailed among most building designers in which technology was an afterthought rather than integral to the building design. The latest revision of the MasterFormat in 2004 was an improvement, but still lags in terms of technological advances in buildings. It is evident that technology is advancing more rapidly and probably progressing through several life cycles during the time it takes to revise the construction specification format guidelines.
Smart buildings are not just about installing and operating technology or technology advancements. Technology and the systems in buildings are simply enablers, a means to an end. The technology allows us to operate the building more efficiently; to construct the buildings in a more efficient way, to provide productive and healthy spaces for the occupants and visitors, to provide a safe environment, to provide an energy-efficient and sustainable environment, and to differentiate and improve the marketability of the building.

What Is a Smart Building?

A smart building involves the installation and use of advanced and integrated building technology systems. These systems include building automation, life safety, telecommunications, user systems, and facility management systems. Smart buildings recognize and reflect the technological advancements and convergence of building systems, the common elements of the systems and the additional functionality that integrated systems provide. Smart buildings provide actionable information about a building or space within a building to allow the building owner or occupant to manage the building or space.
Smart buildings provide the most cost effective approach to the design and the deployment of building technology systems. The traditional way to design and construct a building is to design, install, and operate each system separately (Fig. 1.1).
B9781856176538000016/gr1.webp is missing
Figure 1.1
Multiple proprietary building systems.
The smart building takes a different approach to designing the systems. Essentially, one designer designs or coordinates the design of all the building technology systems into a unified and consistent construction document. The construction document specifies each system and addresses the common system elements or integration foundation for the systems. These include cabling, cable pathways, equipment rooms, system databases, and communications protocols between devices. The one consolidated design is then installed by a contractor, referred to as a Technology Contractor or as a Master System Integrator.
This process reduces the inefficiencies in the design and construction process saving time and money. During the operation of the building, the building technology systems are integrated horizontally among all subsystems as well as vertically—that is subsystems to facility management systems to business systems—allowing information and data about the building's operation to be used by multiple individuals occupying and managing the building (Fig. 1.2).
B9781856176538000016/gr2.webp is missing
Figure 1.2
Integrated building systems.
Smart buildings are also a critical component regarding energy usage and sustainability of buildings and the smart electrical grid. The building automation systems, such as HVAC control, lighting control, power management, and metering play a major role in determining the operational energy efficiency of a building. The smart electrical grid is dependent on smart buildings.
The driving forces for smart buildings are economics, energy, and technology. Smart buildings leverage mainstream information technology infrastructure and take advantage of existing and emerging technology. For developers and owners, smart buildings increase the value of a property. For property and facility managers, smart buildings provide more effective subsystems and more efficient management options, such as the consolidation of system management. For architects, engineers, and construction contractors, it means combining portions of the design and construction with the resulting savings and efficiencies in project management and project scheduling.
Chapter 2. The Foundations of a Smart Building

Overview

All technology systems in a building are networks consisting of end devices that communicate with control devices or servers to monitor, manage, or provide services to the end devices. Communications between the devices occur via a set of rules or protocols. Connectivity between devices on the network is either through cable or a wireless transmitter/receiver. The network typically has a system administration workstation or PC that provides a management and reporting function.
In many systems, databases are associated with the network such as security access credentials and lighting schedules. Recognition of these network commonalities together with the utilization of typical information technology infrastructure comprises the core of smart buildings and the integration foundations of building technology systems.
Smart buildings are built on open and standard communications networks which make the following characteristics possible: (1) inter-application communication; (2) efficiencies and cost savings in materials, labor, and equipment; and (3) interoperable systems from different manufacturers.

The Framework for Referencing Integration

Building system integration takes place at physical, network and application levels. Integrated systems share resources. This sharing of resources underpins the financial metrics and improved functionality of integrated systems.
System integration involves bringing the building systems together both physically and functionally. The physical dimension obviously refers to the cabling, space, cable pathways, power, environmental controls, and infrastructure support. It also touches on common use of open protocols by the systems. The functional dimension refers to an interoperational capability, this means integrated systems provide functionality that cannot be provided by any single system, the whole is greater than the sum of the parts.
There is a key differentiation between integrated and interfaced systems. Interfaced systems are essentially standalone systems that share data, but continue to function as standalone systems. Integrated systems strive for a single database, a meta-database, thus reducing the cost and support for synchronizing separate databases.
At the forefront of the evolution to open network standards is the International Standards Organization's (ISO) development of the Open System Interconnection (OSI) model. The OSI model presents seven layers of network architecture (the flow of information within an open communications network), with each layer defined for a different portion of the communications link across the network. This model has withstood the test of time and its framework and derivatives should serve as the reference point for network integration (Fig. 2.1).
B9781856176538000028/gr1.webp is missing
Figure 2.1
Network model layers.
The model is straightforward. A network device or administrator creates and initiates the transmission of data at the top layer (the application layer), which moves from the highest layer to the lowest layer (physical layer) to communicate the data to another network device or user. At the receiving device the data travel from the lowest layer to the highest layer to complete the communication. When the data packet is initially sent each layer takes the data of the preceding layers and adds its own information or header to the data. Basically, each layer puts its own “envelope” around the preceding “envelope...

Table of contents