Island Life
eBook - ePub

Island Life

Or, the Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Island Life

Or, the Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates

Book details
Book preview
Table of contents
Citations

About This Book

Alfred Russel Wallace is best known as the codiscoverer, with Charles Darwin, of natural selection, but he was also history's foremost tropical naturalist and the father of biogeography, the modern study of the geographical basis of biological diversity. Island Life has long been considered one of his most important works. In it he extends studies on the influence of the glacial epochs on organismal distribution patterns and the characteristics of island biogeography, a topic as vibrant and actively studied today as it was in 1880. The book includes history's first theory of continental glaciation based on a combination of geographical and astronomical causes, a discussion of island classification, and a survey of worldwide island faunas and floras.             The year 2013 will mark the centennial of Wallace's death and will see a host of symposia and reflections on Wallace's contributions to evolution and natural history. This reissue of the first edition of Island Life, with a foreword by David Quammen and an extensive commentary by Lawrence R. Heaney, who has spent over three decades studying island biogeography in Southeast Asia, makes this essential and foundational reference available and accessible once again.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Island Life by Alfred Russel Wallace in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Science General. We have over one million books available in our catalogue for you to explore.

Information

PART I. THE DISPERSAL OF ORGANISMS; ITS PHENOMENA, LAWS, AND CAUSES.
CHAPTER I. INTRODUCTORY.
Remarkable Contrasts in distribution of Animals—Britain and Japan—Australia and New Zealand—Bali and Lombok—Florida and Bahama Islands—Brazil and Africa—Borneo, Madagascar, and Celebes—Problems in distribution to be found in every country—Can be solved only by the combination of many distinct lines of inquiry, biological and physical—Islands offer the best subjects for the study of distribution—Outline of the subjects to be discussed in the present volume.
WHEN an Englishman travels by the nearest sea-route from Great Britain to Northern Japan he passes by countries very unlike his own, both in aspect and natural productions. The sunny isles of the Mediterranean, the sands and date-palms of Egypt, the arid rocks of Aden, the cocoa groves of Ceylon, the tiger-haunted jungles of Malacca and Singapore, the fertile plains and volcanic peaks of Luzon, the forest-clad mountains of Formosa, and the bare hills of China, pass successively in review; till after a circuitous voyage of thirteen thousand miles he finds himself at Hakodadi in Japan. He is now separated from his starting-point by the whole width of Europe and Northern Asia, by an almost endless succession of plains and mountains, arid deserts or icy plateaux, yet when he visits the interior of the country he sees so many familiar natural objects that he can hardly help fancying he is close to his home. He finds the woods and fields tenanted by tits, hedge-sparrows, wrens, wagtails, larks, redbreasts, thrushes, buntings, and house-sparrows, some absolutely identical with our own feathered friends, others so closely resembling them that it requires a practised ornithologist to tell the difference. If he is fond of insects he notices many butterflies and a host of beetles which, though on close examination they are found to be distinct from ours, are yet of the same general aspect, and seem just what might be expected in any part of Europe. There are also of course many birds and insects which are quite new and peculiar, but these are by no means so numerous or conspicuous as to remove the general impression of a wonderful resemblance between the productions of such remote islands as Britain and Yesso.
Now let an inhabitant of Australia sail to New Zealand, a distance of less than thirteen hundred miles, and he will find himself in a country whose productions are totally unlike those of his own. Kangaroos and wombats there are none, the birds are almost all entirely new, insects are very scarce and quite unlike the handsome or strange Australian forms, while even the vegetation is all changed, and no gum-tree, or wattle, or grass-tree meets the traveller’s eye.
But there are some more striking cases even than this, of the diversity of the productions of countries not far apart. In the Malay Archipelago there are two islands, named Bali and Lombok, each about as large as Corsica, and separated by a strait only fifteen miles wide at its narrowest part. Yet these islands differ far more from each other in their birds and quadrupeds than do England and Japan. The birds of the one are extremely unlike those of the other, the difference being such as to strike even the most ordinary observer. Bali has red and green woodpeckers, barbets, weaver-birds, and black-and-white magpie-robins, none of which are found in Lombok, where, however, we find screaming cockatoos and friar-birds, and the strange mound-building megapodes, which are all equally unknown in Bali. Many of the kingfishers, crow-shrikes, and other birds, though of the same general form, are of very distinct species; and though a considerable number of birds are the same in both islands the difference is none the less remarkable—as proving that mere distance is one of the least important of the causes which have determined the likeness or unlikeness in the animals of different countries.
In the western hemisphere we find equally striking examples. The Eastern United States possess very peculiar and interesting plants and animals, the vegetation becoming more luxuriant as we go south but not altering in essential character, so that when we reach the southern extremity of Florida we still find ourselves in the midst of oaks, sumachs, magnolias, vines, and other characteristic forms of the temperate flora; while the birds, insects, and land-shells are almost identical with those found further north. But if we now cross over the narrow strait, about fifty miles wide, which separates Florida from the Bahama Islands, we find ourselves in a totally different country, surrounded by a vegetation which is essentially tropical and generally identical with that of Cuba. The change is most striking, because there is no difference of climate, of soil, or apparently of position, to account for it; and when we find that the birds, the insects, and especially the land-shells are almost all West Indian, while the North American types of plants and animals have almost all completely disappeared, we shall be convinced that such differences and resemblances cannot be due to existing conditions, but must depend upon laws and causes to which mere proximity of position offers no clue.
Hardly less uncertain and irregular are the effects of climate. Hot countries usually differ widely from cold ones in all their organic forms; but the difference is by no means constant, nor does it bear any proportion to difference of temperature. Between frigid Canada and sub-tropical Florida there are less marked differences in the animal productions than between Florida and Cuba or Yucatan, so much more alike in climate and so much nearer together. So the differences between the birds and quadrupeds of temperate Tasmania and tropical North Australia are slight and unimportant as compared with the enormous differences we find when we pass from the latter country to equally tropical Java. If we compare corresponding portions of different continents, we find no indication that the almost perfect similarity of climate and general conditions has any tendency to produce similarity in the animal world. The equatorial parts of Brazil and of the West Coast of Africa are almost identical in climate and in luxuriance of vegetation, but their animal life is totally diverse. In the former we have tapirs, sloths, and prehensile-tailed monkeys; in the latter elephants, antelopes, and man-like apes; while among birds, the toucans, chatterers, and humming-birds of Brazil are replaced by the plantain-eaters, bee-eaters, and sun-birds of Africa. Parts of South-temperate America, South Africa, and South Australia, correspond closely in climate; yet the birds and quadrupeds of these three districts are as completely unlike each other as those of any parts of the world that can be named.
If we visit the great islands of the globe, we find that they present similar anomalies in their animal productions, for while some exactly resemble the nearest continents others are widely different. Thus the quadrupeds birds and insects of Borneo correspond very closely to those of the Asiatic continent, while those of Madagascar are extremely unlike African forms, although the distance from the continent is less in the latter case than in the former. And if we compare the three great islands Sumatra, Borneo, and Celebes—lying as it were side by side in the same ocean—we find that the two former, although furthest apart, have almost identical productions, while the two latter, though closer together, are more unlike than Britain and Japan situated in different oceans and separated by the largest of the great continents.
These examples will illustrate the kind of questions it is the object of the present work to deal with. Every continent, every country, and every island on the globe, offer similar problems of greater or less complexity and interest, and the time has now arrived when their solution can be attempted with some prospect of success. Many years study of this class of subjects has convinced me that there is no short and easy method of dealing with them; because they are, in their very nature, the visible outcome and residual product of the whole past history of the earth. If we take the organic productions of a small island, or of any very limited tract of country such as a moderate-sized country parish, we have, in their relations and affinities—in the fact that they are there and others are not there, a problem which involves all the migrations of these species and their ancestral forms—all the vicissitudes of climate and all the changes of sea and land which have affected those migrations—the whole series of actions and reactions which have determined the preservation of some forms and the extinction of others,—in fact the whole history of the earth, inorganic and organic, throughout a large portion of geological time.
We shall perhaps better exhibit the scope and complexity of the subject, and show that any intelligent study of it was almost impossible till quite recently, if we concisely enumerate the great mass of facts and the number of scientific theories or principles which are necessary for its elucidation.
We require then in the first place an adequate knowledge of the fauna and flora of the whole world, and even a detailed knowledge of many parts of it, including the islands of more special interest and their adjacent continents. This kind of knowledge is of very slow growth, and is still very imperfect;1 and in many cases it can never now be obtained owing to the reckless destruction of forests and with them of countless species of plants and animals. In the next place we require a true and natural classification of animals and plants, so that we may know their real affinities; and it is only now that this is being generally arrived at. We further have to make use of the theory of “descent with modification” as the only possible key to the interpretation of the facts of distribution, and this theory has only been generally accepted within the last twenty years. It is evident that, so long as the belief in “special creations” of each species prevailed, no explanation of the complex facts of distribution could be arrived at or even conceived; for if each species was created where it is now found no further inquiry can take us beyond that fact, and there is an end of the whole matter. Another important factor in our interpretation of the phenomena of distribution, is a knowledge of the extinct forms that have inhabited each country during the tertiary and secondary periods of geology. New facts of this kind are daily coming to light, but except as regards Europe, North America, and parts of India, they are extremely scanty; and even in the best-known countries the record itself is often very defective and fragmentary. Yet we have already obtained remarkable evidence of the migrations of many animals and plants in past ages, throwing an often unexpected light on the actual distribution of many groups.2 By this means alone can we obtain positive evidence of the past migrations of organisms; and when, as too frequently is the case, this is altogether wanting, we have to trust to collateral evidence and more or less probable hypothetical explanations. Hardly less valuable is the evidence of stratigraphical geology; for this often shows us what parts of a country have been submerged at certain epochs, and thus enables us to prove that certain areas have been long isolated and the fauna and flora allowed time for special development. Here, too, our knowledge is exceedingly imperfect, though the blanks upon the geological map of the world are yearly diminishing in extent. Lastly, as a most valuable supplement to geology, we require to know the exact depth and contour of the ocean-bed, since this affords an important clue to the former existence of now-submerged lands, uniting islands to continents, or affording intermediate stations which have aided the migrations of many organisms. This kind of information has only begun to be obtained during the last few years; and it will be seen in the latter part of this volume, that some of the most recent deep-sea soundings have afforded a basis for an explanation of one of the most difficult and interesting questions in geographical biology—the origin of the fauna and flora of New Zealand.
Such are the various classes of evidence that bear directly on the question of the distribution of organisms; but there are others of even a more fundamental character, and the importance of which is only now beginning to be recognised by students of nature. These are, firstly, the wonderful alterations of climate which have occurred in the temperate and polar zones, as proved by the evidences of glaciation in the one and of luxuriant vegetation in the other; and, secondly, the theory of the permanence of existing continents and oceans. If glacial epochs in temperate lands and mild climates near the poles have, as now believed by men of eminence, occurred several times over in the past history of the earth, the effects of such great and repeated changes, both on the migration, modification, and extinction, of species, must have been of overwhelming importance—of more importance perhaps than even the geological changes of sea and land. It is therefore necessary to consider the evidence for these climatal changes; and then, by a critical examination of their possible causes, to ascertain whether they were isolated phenomena, were due to recurrent cosmical actions, or were the result of a great system of terrestrial development. The latter is the conclusion we arrive at; and this conclusion brings with it the conviction, that in the theory which accounts for both glacial epochs and warm polar climates, we have the key to explain and harmonize many of the most anomalous biological and geological phenomena, and one which is especially valuable for the light it throws on the dispersal and existing distribution of organisms. The other important theory, or rather corollary from the preceding theory—that of the permanence of oceans and the general stability of continents throughout all geological time, is as yet very imperfectly understood, and seems, in fact, to many persons in the nature of a paradox. The evidence for it, however, appears to me to be conclusive; and it is certainly the most fundamental question in regard to the subject we have to deal with: since, if we once admit that continents and oceans may have changed places over and over again (as many writers maintain), we lose all power of reasoning on the migrations of ancestral forms of life, and are at the mercy of every wild theorist who chooses to imagine the former existence of a now-submerged continent to explain the existing distribution of a group of frogs or a genus of beetles.
As already shown by the illustrative examples adduced in this chapter, some of the most remarkable and interesting facts in the distribution and affinities of organic forms are presented by islands in relation to each other and to the surrounding continents. The study of the productions of the Galapagos—so peculiar, and yet so decidedly related to the American continent—appear to have had a powerful influence in determining the direction of Mr. Darwin’s researches into the origin of species; and every naturalist who studies them has always been struck by the unexpected relations or singular anomalies which are so often found to characterize the fauna and flora of islands. Yet their full importance in connection with the history of the earth and its inhabitants has hardly yet been recognised; and it is in order to direct the attention of naturalists to this most promising field of research, that I restrict myself in this volume to an elucidation of some of the problems they present to us. By far the larger part of the islands of the globe are but portions of continents undergoing some of the various changes to which they are ever subject; and the correlative statement, that every part of our continents have again and again passed through insular conditions, has not been sufficiently considered, but is, I believe, the statement of a great and most suggestive truth, and one which lies at the foundation of all accurate conception of the physical and organic changes which have resulted in the present state of the earth.
The indications now given of the scope and purpose of the present volume renders it evident that, before we can proceed to the discussion of the remarkable phenomena presented by insular faunas and floras, and the complex causes which have produced them, we must go through a series of preliminary studies, adapted to give us a command of the more important facts and principles on which the solution of such problems depends. The succeeding eight chapters will therefore be devoted to the explanation of the mode of distribution, variation, modification, and dispersal, of species and groups, illustrated by facts and examples; of the true nature of geological change as affecting continents and islands; of changes of climate, their nature, causes, and effects; of the duration of geological time and the rate of organic development.
CHAPTER II. THE ELEMENTARY FACTS OF DISTRIBUTION.
Importance of Locality as an essential character of Species—Areas of Distribution—Extent and Limitations of Specific Areas—Specific range of Birds—Generic Areas—Separate and overlapping areas—The species of Tits as illustrating Areas of Distribution—The distribution of the species of Jays—Discontinuous generic areas—Peculiarities of generic and family distribution—General features of overlapping and discontinuous areas—Restricted areas of Families—The distribution of Orders.
So long as it was believed that the several species of animals and plants were “special creations,” and had been formed expressly to inhabit the countries in which they are now found, their habitat was an ultimate fact which required no explanation. It was assumed that every animal was exactly adapted to the climate and surroundings amid which it lived, and that the only, or, at all events, the chief reason why it did not inhabit another country was, that the climate or general conditions of that country were not suitable to it, but in what the unsuitability consisted we could rarely hope to discover. Hence the exact locality of any species was not thought of much importance from a scientific point of view, and the idea that anything could be learnt by a comparative study of different floras and faunas never entered the minds of the older naturalists.
But so soon as the theory of evolution came to be generally adopted, and it was seen that each animal could only have come into existence in some area where ancestral forms closely allied to it already lived, a real and important relation was established between an animal and its native country, and a new set of problems at once sprang into existence. From the old point of view the diversities of animal life in the separate continents, even where physical conditions were almost identical, was the fact that excited astonishment; but seen by the light of the evolution theory, it is the resemblances rather than the diversities in these distant continents and islands that are most difficult to explain. It thus comes to be admitted that a knowledge of the exact area occupied by a species or a group is a...

Table of contents

  1. Cover
  2. Copyright
  3. Frontispiece
  4. Title Page
  5. Foreword
  6. Introduction and Commentary
  7. Dedication
  8. Preface
  9. Contents
  10. Maps and Illustrations
  11. PART I. THE DISPERSAL OF ORGANISMS; ITS PHENOMENA, LAWS, AND CAUSES.
  12. PART II. INSULAR FAUNAS AND FLORAS.
  13. Notes
  14. Index
  15. Also by the Author