Understanding Philosophy of Science
eBook - ePub

Understanding Philosophy of Science

  1. 304 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Understanding Philosophy of Science

Book details
Book preview
Table of contents
Citations

About This Book

Few can imagine a world without telephones or televisions; many depend on computers and the Internet as part of daily life. Without scientific theory, these developments would not have been possible.In this exceptionally clear and engaging introduction to philosophy of science, James Ladyman explores the philosophical questions that arise when we reflect on the nature of the scientific method and the knowledge it produces. He discusses whether fundamental philosophical questions about knowledge and reality might be answered by science, and considers in detail the debate between realists and antirealists about the extent of scientific knowledge. Along the way, central topics in philosophy of science, such as the demarcation of science from non-science, induction, confirmation and falsification, the relationship between theory and observation and relativism are all addressed. Important and complex current debates over underdetermination, inference to the best explaination and the implications of radical theory change are clarified and clearly explained for those new to the subject.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Understanding Philosophy of Science by James Ladyman in PDF and/or ePUB format, as well as other popular books in Philosophy & Philosophy History & Theory. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Routledge
Year
2012
ISBN
9781134597901
Part I
image
The scientific method
1
image
Induction and inductivism
1.1 The sceptic’s challenge
Our starting point is the desire to arbitrate the following dispute that arises when Alice, who has been reading A Brief History of Time by Stephen Hawking, is trying to explain the exciting things she has learned about the Big Bang and the history of the universe to her friend Thomas.
image
Alice:
. . . and so one second after the Big Bang the temperature of the universe was about ten thousand million degrees, which is about the same as the temperature in the middle of the explosion of a nuclear bomb.
Thomas:
Do you really buy all that stuff? Don’t you think it’s a bit far-fetched?
Alice:
Of course I believe it, and I don’t think it is any more far-fetched than the fact that this table we are sitting at is almost all empty space and that it is made of atoms so tiny that millions of them could fit on the end of a pin.
Thomas:
Exactly, it is just as far-fetched and you are just gullible for believing it.
Alice:
But that is what science tells us.
Thomas:
‘Science’ doesn’t tell us anything; scientists, people like you or me, tell us things and like all people they tell us what is in their interest to tell us.
Alice:
What do you mean?
Thomas:
Isn’t it obvious? A used-car dealer will tell you that a car is a lovely little runner with one previous owner because they want you to buy the car, priests tell you that you must come to church so you can go to heaven, because otherwise they would be out of a job, and scientists tell us all that nonsense so we will be amazed at how clever they are and keep spending taxpayers’ money on their research grants.
Alice:
Now you are just being cynical; not everyone is out for themselves you know.
Thomas:
And you are just being naïve; anyway, even supposing that scientists really believe their theories, can’t you see that science is just the modern religion?
Alice:
What do you mean?
Thomas:
Well, if you were living five hundred years ago you would believe in angels and saints and the Garden of Eden; science has just replaced religion as the dominant belief system of the West. If you were living in a tribe in the jungle somewhere you would believe in whatever creation myths the elders of the tribe passed down to you, but you happen to be living here and now, so you believe what the experts in our tribe, who happen to be the scientists, tell us.
Alice:
You can’t compare religious dogma and myth with science.
Thomas:
Why not?
Alice:
Because scientists develop and test their beliefs according to proper methods rather than just accepting what they are told.
Thomas:
Well you are right that they claim to have a method that ensures their theories are accurate but I don’t believe it myself, otherwise they would all come to the same conclusions and we know that scientists are always arguing with each other, like about whether salt or sugar is really bad for you.
Alice:
Well it takes time for theories to be proven but they will find out eventually.
Thomas:
Your faith is astounding – and you claim that science and
religion are totally different. The scientific method is a myth put about by scientists who want us to believe their claims. Look at all the drugs that have been tested by scientific methods and pronounced safe only to be withdrawn a few years later when people find out how dangerous they are.
Alice:
Yes but what about all the successful drugs and the other amazing things science has done.
Thomas:
Trial and error, that’s the only scientific method there is, it’s as simple as that. The rest is just propaganda.
Alice:
I can’t believe that; scientific theories, like the Big Bang theory, are proved by experiments and observations, that is why we ought to believe them and that is what makes them different from creation myths and religious beliefs.
Thomas:
So you say but how can experiments and observations prove a theory to be true?
Alice:
I suppose I don’t really know.
Thomas:
Well let me know when you’ve found out.
image
In this dialogue, one of the characters challenges the other to explain why her beliefs, which are based on what she has been told by scientists, are any better supported than belief in angels and devils or the spirits and witchcraft of animistic religions. Of course, there are lots of things that each of us believe that we cannot justify directly our-selves; for example, I believe that large doses of arsenic are toxic to humans, but I have never even seen any arsenic as far as I am aware, and I have certainly never tested its effects. We all believe all kinds of things to be the case because we rely upon what others tell us directly or indirectly; whether or not we are justified depends upon whether or not they are justified. Most readers of this book probably believe that the Earth revolves around the Sun, that we as human beings evolved from animals that were more like apes, that water is made of twice as much hydrogen as oxygen, that diseases are often caused by viruses and other tiny organisms, and so on. If we believe these things it is because the experts in our tribe (the scientists) tell us them; in that way, the causes of our beliefs are of much the same kind as those of someone who believes what the local witch-doctor tells them about, say, the cause of disease being the witchcraft of another person. We like to think that there is a difference between our beliefs and belief in witchcraft nonetheless; if there isn’t then why do we spend so much money on modern drugs and treatments when a few sacrifices or spells would do just as well?
Our believer (Alice) thinks that the scientific method is what makes the difference, in that our beliefs are ultimately produced and proven by it, and that it has something to do with experiments and observation. In this chapter we will investigate the nature of the scientific method, if indeed there is one, beginning with the origins of modern science in the search for a new method of inquiry to replace reliance on the authority of the Church and the pronouncements of the ancients. Our goal will be to determine whether Alice, who believes in what science tells her, is entitled to her faith or whether the attitude of the sceptic, Thomas, is in fact the more reasonable one.
1.2 The scientific revolution
The crucial developments in the emergence of modern science in the western world took place during the late sixteenth and the seventeenth centuries. Within a relatively short space of time, not only was much of what had previously been taken for granted discredited and abandoned, but also a host of new theoretical developments in astronomy, physics, physiology and other sciences were established. The study of the motion of matter in collisions and under the influence of gravity (which is known as mechanics) was completely revolutionised and, beginning with the work of Galileo Galilei (1564–1642) in the early sixteen hundreds and culminating in the publication of Isaac Newton’s (1642–1727) mathematical physics in 1687, this part of physics became a shining example of scientific achievement because of its spectacular success in making accurate and precise predictions of the behaviour of physical systems. There were equally great advances in other areas and powerful new technologies, such as the telescope and microscope, were developed.
This period in intellectual history is often called the Scientific revolution and embraces the Copernican revolution, which is the name given to the period during which the theory of the solar system and the wider cosmos, which had the Earth at the centre of everything (geocentrism), was replaced by the theory that the Earth revolved around the Sun (heliocentrism). From the philosophical point of view the most important development during the scientific revolution was the increasingly widespread break with the theories of Aristotle (384– 322 BC). As new ideas were proposed, some thinkers began to search for a new method that could be guaranteed to bring knowledge. In the Introduction we found that for a belief to count as knowledge it must be justified, so if we want to have knowledge we might aim to follow a procedure when forming our beliefs that simultaneously provides us with a justification for them; the debate about what such a procedure might consist of, which happened during the scientific revolution, was the beginning of the modern debate about scientific method.
In medieval times, Aristotle’s philosophy had been combined with the doctrines of Christianity to form a cosmology and philosophy of nature (often called scholasticism) that described everything from the motions of the planets to the behaviour of falling bodies on the Earth, the essentials of which were largely unquestioned by most western intellectuals. According to the Aristotelian view, the Earth and the heavens were completely different in their nature. The Earth and all things on and above it, up as far as the Moon, were held to be subject to change and decay and were imperfect; everything here was composed of a combination of the elements of earth, air, fire and water, and all natural motion on the Earth was fundamentally in a straight line, either straight up for fire and air, or straight down for water and earth. The heavens, on the other hand, were thought to be perfect and changeless; all the objects that filled them were supposed to be made up of a quite different substance, the fifth essence (or quintessence), and all motion was circular and continued forever.
Although not everyone in Europe prior to the scientific revolution was an Aristotelian, this was the dominant philosophical outlook, especially because of its incorporation within official Catholic doctrine. The break with Aristotelian philosophy began slowly and with great controversy, but by the end of the seventeenth century the radically non-Aristotelian theories of Galileo, Newton and others were widely accepted. Perhaps the most significant event in this process was the publication in 1543 of a theory of the motions of the planets by the astronomer Nicolaus Copernicus (1473–1543). In the Aristotelian picture, the Earth was at the centre of the universe and all the heavenly bodies, the Moon, the planets, the Sun and the stars revolved around the Earth following circular orbits. An astronomer and mathematician called Ptolemy of Alexandria (circa AD 150) systematically described these orbits mathematically. However, the planets’ motions in the sky are difficult to reproduce in this way because sometimes they appear to go backwards for a while (this is called retrograde motion). Ptolemy found that to get the theory to agree at all well with observations, the motions of the planets had to be along circles that themselves revolved around the Earth, and this made the theory very complex and difficult to use (see Figure 1).
Copernicus retained the circular motions but placed the Sun rather than the Earth at the centre of the system, and then had the Earth rotating both about its own axis and around the Sun, and this considerably simplified matters mathematically. Subsequently, Copernicus’ theory was improved by the work of Johannes Kepler (1571–1630), who treated the planets as having not circular but elliptical orbits, and it was the latter’s theory of the motions of the planets that Newton elaborated with his gravitational force and which is still used today for most practical purposes.
One thing to note about the Copernican system is that it may seem to be counter to our experience in the sense that we do not feel the
image
Figure 1
Earth to be moving when we stand still upon it, and moreover we observe the Sun to move over our heads during the day. This is an important example of how scientific theories seem to describe a reality distinct from the appearance of things. This distinction between appearance and reality is central to metaphysics because the latter seeks to describe things ‘as they really are’ rather than how they merely appear to be. When Copernicus’ book was published, after his death, it included a preface by Andreas Osiander (1498–1552) (a friend of Copernicus who had helped prepare the book for publication) which declared that the motion of the Earth was a convenient assumption made by Copernicus but which need only be regarded as a mathematical fiction, rather than being taken literally as asserting that the Earth really was in orbit around the Sun. This is an early example of the philosophical thesis of instrumentalism, according to which scientific theories need not be believed to be true, but rather should be thought of as useful or convenient fictions. On the other hand, to be a realist about Copernicus’ theory is to think that it should be taken literally and to believe that the Earth really does orbit the Sun. Realists, unlike instrumentalists, think that scientific theories can answer metaphysical questions. (We shall return to the realism versus instrumentalism debate later.)
The doctrine that the Earth is not at the centre of the universe and that it is, in fact, in motion around the Sun was in direct contradiction with Catholic doctrine and Osiander’s preface did not prevent a controversy arising about Copernicus’ theory. This controversy became quite fierce by the early years of the seventeenth century and, in 1616, Copernicus’ book and all others that adopted the heliocentric hypothesis were placed on a list of books that Catholics were banned from teaching or even reading. It may be hard to appreciate why the Church was so worried about a theory in astronomy, but heliocentrism not only conflicted with the Aristotelian picture of the universe and rendered its explanations of motion inapplicable, it also conflicted with the traditional understanding of the Book of Genesis and the Fall of Adam and Eve, the relationship between the Earth and the Devil on the one hand and the Heavens and God on the other, and so on. The consequence of this was that if one were to adopt the Copernican theory, a great deal of what one took for granted was thrown into doubt – hence the need for a way of replacing the Aristotelian picture of the world with a set of beliefs that were equally comprehensive, but more up to date.
1.3 The ‘new tool’ of induction
The emergence of modern science required not just the contribution of those like Copernicus and Galileo who proposed new theories, but also the contribution of people who could describe and then advocate and propagate the new ways of thinking. In modern parlance, science needed to be marketed and sold to intellectuals who would otherwise have accepted the established Aristotelian thinking. Greatest among the propagandists of the emerging sciences was Francis Bacon (1561– 1626), who explicitly proposed a method for the sciences to replace that of Aristotle. In his book Novum Organum of 1620 he set out this method in great detail and it still forms the core of what many people take the scientific method to be. Many of Bacon’s contemporaries thought that the ancients had understood all there was to be known and that it was just a matter of recovering what had been lost. By contrast, Bacon was profoundly ambitious about what new things could be known and how such knowledge could be employed practically (he is often credited with originating the phrase ‘knowledge is power’).
Bacon’s method is thoroughly egalitarian and collectivist in spirit: he believed that...

Table of contents

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright
  5. Dedication
  6. Contents
  7. Preface
  8. Acknowledgements
  9. Introduction
  10. Part I: The Scientific Method
  11. Part II: Realism and Antirealism about Science
  12. Glossary
  13. Bibiliography
  14. Index