Our Synthetic Environment
eBook - ePub

Our Synthetic Environment

  1. 237 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Our Synthetic Environment

Book details
Book preview
Table of contents
Citations

About This Book

Bookchin wrote Our Synthetic Environment under the pseudonym Lewis Herber. This was one of the first books of the modern period in which an author espoused an ecological and environmentalist worldview. It predates Silent Spring (1962) by Rachel Carson, a more widely known book on the same topic widely credited as starting the environmental movement. "At the time of its publication, Our Synthetic Environment was the most comprehensive and enlightened book on the environmental crisis. Many other books on this topic have been published since, but none, I believe, as comprehensive." --René Dubos—Print ed.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Our Synthetic Environment by Lewis Herber, Murray Bookchin in PDF and/or ePUB format, as well as other popular books in Biological Sciences & Science General. We have over one million books available in our catalogue for you to explore.

Information

Year
2020
ISBN
9781839744532

CHAPTER ONE — The Problem

OUR CHANGED ENVIRONMENT
LIFE in the United States has changed so radically over the past one hundred years that the most wearisome historians tend to become rhapsodic when they describe the new advances that have been made in technology, science, and medicine. We are usually told that early in the last century most Americans lived heroic but narrow lives, eking out a material existence that was insecure and controlled by seasonal changes, drought, and the natural fertility of the soil. Daily work chores were extremely arduous; knowledge, beleaguered by superstition, was relatively crude. Historians with an interest in science often point out that medical remedies were primitive, if not useless; they may have sufficed to relieve the symptoms of common diseases, but they seldom effected a cure. Life was hard and precarious, afflicted by many tragedies that can easily be avoided today.
In contrast with the men of the last century, men today, we are told, have developed nearly complete control over the natural forces that once were the masters of their ancestors. Advances in communication have brought knowledge and safety to the most isolated communities. The most arduous work has now been taken over by machines, and material existence has become secure, even affluent. Common illnesses that once claimed the lives of millions are now easily controlled by a scientific knowledge of disease, effective drugs, new diagnostic devices, and highly developed surgical techniques. The American people, it is claimed, enjoy more leisure, better health, greater longevity, and more varied and abundant diets than did their forebears a hundred years ago.
On the face of it, these statements are true, but by no means are all the advances as beneficial as the historians would have us believe. Recent changes in our synthetic environment have created new problems that are as numerous as those which burdened the men of the past. For example, soon nearly 70 per cent of the American{1} population will be living in large metropolitan centers, such as New York, Chicago, and Los Angeles. They will be exposed in ever-greater numbers to automobile exhausts and urban air pollutants. Perhaps an even larger percentage of the employed population will be working in factories and offices. These people will be deprived of sunlight and fresh air during the best hours of the day. Factory and office work, while less arduous than in the past, is becoming more intensive. Although the working day early in the last century was very long, “the worker{2} worked comparatively slowly, and both the employer and employee gave relatively little thought to productivity.” Today, employers require a greater output per hour from each worker. The use of machines tends to make work monotonous and sedentary, often exhausting human nerves as completely as manual work exhausted human muscles. Modern man is far less physically active than his forebears were. He observes rather than performs, and uses less and less of his body at work and play. His diet, although more abundant, consists of highly processed foods. These foods contain a disconcertingly large amount of pesticide residues, coloring and flavoring matter, preservatives, and chemical “technological aids,” many of which may impair his health. His waterways and the air he breathes contain not only the toxic wastes of the more familiar industries but radioactive pollutants, the byproducts of peacetime uses of nuclear energy and nuclear weapons tests.
With the rise of these problems, dramatic changes have occurred in the incidence of disease. In 1900, infectious diseases, such as pneumonia, influenza, and tuberculosis, were the principal causes of death. Death from heart disease and cancer occupied a secondary place in American vital statistics. Fifty years later, mortality{3} rates from infectious diseases had declined to a fraction of what they had been, but the percentage of deaths from heart disease and malignant tumors had more than doubled. It is very difficult to obtain reliable comparative statistics on the incidence of chronic, or persistent, diseases, but we can regard it as almost certain that the proportion of chronically ill individuals in the American population has increased. In any case, millions of Americans today suffer from major chronic disorders. Nearly 5 million people are afflicted with heart disease; another 5 million have high blood pressure. More than 12 million suffer from arthritis, 4 million from asthma, and at least 700,000 from cancer. Additional millions suffer from{4} diabetes, kidney disease, and disorders of the nervous system.
Because many of these illnesses claim the lives of elderly people, we tend to associate chronic diseases with the aging process, and we usually explain their widespread occurrence by the fact that people are living longer. Men must die of something. With a reduction in the number of deaths from tuberculosis, influenza, and childhood infections, the diseases of aging people, it is claimed, should be expected to dominate our vital statistics. But are these diseases strictly products of the aging process? Do we have any evidence that they arise from basic physical disturbances peculiar to senescence? The answer is almost certainly no. Many disorders which afflict young people are precisely those so-called “degenerative diseases” that physicians and laymen associate with the retrogressive physical changes of old age.
Consider the age distribution in the incidence of cancer. Although many types of cancer are found mostly after the fourth or fifth decade of life, a surprisingly large number of varieties occur most frequently in childhood, youth, and early maturity. Cancers of the kidney and the adrenal glands usually appear before the age of four. Bone cancers reach their highest incidence in the ten-to-twenty-four age group.{5} Malignant tumors of the testes usually occur in infancy and at maturity. So deeply entrenched was the notion that malignant tumors are diseases of elderly people that for many years physicians often discounted early symptoms of certain cancers in children. We now know that cancer in children occurs in nearly all the major physical organs of the body.
Today, cancer is second only to accidents as a leading cause of death in American children over one year of age. Although mortality rates for childhood cancers fluctuate from year to year, they have moved in a decidedly upward direction over the past two decades; for American children under fifteen years of age, they rose 28 per cent between 1940 and 1955. In 1959, cancer claimed 4,100 lives and accounted for 12 per cent of all deaths in children between the ages of one and fourteen.{6} These statistics make it hazardous to say that the illness is essentially part of the aging process. Strong reasons exist for suspecting that environmental factors contribute significantly to increases in death from cancer among young people.
The same suspicions can be extended to heart and vascular disorders. Until recently, heart disease in young people was caused primarily by infectious illnesses. Rheumatic heart disease, following streptococcal infections, claimed the lives of many children between the ages of ten and fourteen. Fortunately, the incidence of rheumatic fever has been reduced dramatically by the use of antibiotics. On the other hand, coronary heart disease was generally regarded as a typical degenerative illness of older people, attributable to the onset of vascular disorders well beyond the peak of life. The disease seemed to be a culmination of the aging process. This view, too, is no longer a deeply entrenched medical opinion. Atherosclerosis, the precursor of coronary heart attacks, is not a universal feature of old age. On autopsy, many an octogenarian has been found to have coronary arteries that a man in his forties would be fortunate to possess.
Even more disconcerting is the unexpectedly high incidence of coronary illness now known to exist among young people. During the Korean War, the U.S. Armed Forces Institute of Pathology performed a series of autopsies on the bodies of 300 American soldiers, most of whom had been killed in frontline areas. Careful attempts were made to exclude cases in which there had been clinical evidence of coronary disease. The investigators, Enos, Holmes, and Beyer, observed that the average age in “200 cases was 22.1 years.{7} The ages in the first 98 cases were not recorded except that the oldest patient was 33....In 77.3% of the hearts, some gross evidence of coronary atherosclerosis was found.”
In at least 12 per cent of the hearts, the obstruction of one or more major coronary arteries exceeded 50 per cent of the arterial passageway. These are extremely high figures for young men who presumably were qualified for military service. A comparative study performed on the bodies of 350 Americans in Boston and 352 Japanese in Fukuoka “disclosed a considerable difference in the severity of coronary atherosclerosis” between the two national groups. In the American group every individual had some degree of atherosclerosis by the second decade of life, whereas Japanese could be found without the disease in the fifth and sixth decades. Comparing the extent of the arterial surface involved and the severity of the lesions found in the two groups, the investigators emphasize that “there was at least a two-decade difference{8} in the progression of atherosclerosis. The average American of age 40 and the average Japanese of age 60 presented comparable arterial disease.”
In all probability,{9} data of this sort merely supply us with fragmentary evidence of the extent to which chronic and degenerative Illnesses are invading the younger age groups of our population. Many individuals seem to be succumbing to degenerative diseases long before they reach the prime of life. Not only is cancer a leading cause of death in childhood and youth, but the results obtained by Enos and his co-workers suggest that many American males between twenty and thirty years of age are on the brink of major cardiac disease. Although most of these individuals are likely to exhibit no clinical symptoms of vascular disorders—indeed, they would probably be regarded as healthy in routine medical examinations—it is reasonable to say that they are ill. If diseases of this kind represent the normal deterioration of the body, then human biology is taking a patently abnormal turn. A large number of people are breaking down prematurely.
Heredity, of course, may “play a role”—to use a well-worn qualification. But medical history warns us that genetic explanations of disease, particularly common diseases that afflict large sections of the population, are often a refuge for incomplete knowledge. Many such explanations are being contradicted by research. For example, it is very doubtful whether the “inherently” weak and sick, who presumably were rescued by modern medicine from the fatal infections of the past, are destined to be victims of cancer. In fact, there is good reason to believe that the body’s mechanisms for resistance to cancers are entirely distinct from those that combat infections.{10} “The old idea that chronic diseases are{11} ‘degenerative,’ or inevitable concomitants of aging,” observes Lester Breslow, of the California State Department of Public Health, “is giving way to the modern idea that the origins of chronic disease lie in specific external causes which can be discovered and thus controlled.” With all due respect to genetics and to theories that attribute chronic disease to senescence, it would be more rewarding to examine the changes that have occurred over the past half century in man’s diet, habits, forms of work, and physical surroundings.{12}
ENVIRONMENT AND ILLNESS
A BALANCED ATTITUDE toward environmentally induced illness has generally been the exception rather than the rule. In the past, as medical fashions changed, opinion would tend to swing from one oversimplification to an-other. For a long time, the germ theory of disease discouraged giving serious attention to the environment as a major factor in illness. Attempts to investigate the relationship between environmental change and disease were viewed as a regression to the pre-Pasteur days of medicine. The goals of research, it was declared, are to discover and destroy the microorganisms that cause illness. The physician was conceived to be locked in a struggle with microbes, and the human organism was regarded as virtually the only legitimate arena for waging this conflict. The synthetic and social environments outside man’s body seemed irrelevant to the basic problems of diagnosis and therapy, except where sanitation and the isolation of individuals with communicable diseases were involved.{13}
This view has never fully explained society’s experience with tuberculosis. In Europe, tuberculosis had always flourished among the urban poor,{14} but except for occasional flare-ups here and there, the disease had never assumed the epidemic proportions of cholera and typhus. With the Industrial Revolution, however, tuberculosis became especially widespread and virulent. The crowding of uprooted rural folk into cities, the impoverishment and overcrowding of the new industrial laboring classes, and the decline in nearly all standards of nutrition, health, and sanitation raised tuberculosis from a tenacious but controlled urban disease to an illness pandemic throughout the Western world. The disease did not begin to recede until sweeping reforms were made in the economic life of Europe and America. It was brought under control only after the working classes had achieved shorter working hours, higher income, better housing, and improved sanitation—in short, after the standard of living had been raised.{15} It is no overstatement to declare that the social reformers who were instrumental in getting children removed from the factories and helped bring about higher wages and the eight-hour working day did more to control tuberculosis than did Koch, who discovered the tubercle bacillus.
When it became evident that the incidence of tuberculosis could be attributed to social factors as well as to the presence of a germ, another oversimplification took hold in medical circles. The disease was transformed into a model of environmentally induced illness. In respiratory tuberculosis, a simple, dramatic interaction seems to exist between an infectious agent and environmental conditions. On the one hand, without the tubercle bacillus there can be no tuberculosis; the germ is a disease-causing, or pathogenic, agent. On the other hand, many healthy people in Europe and the United States have bad arrested cases of tuberculosis without ever knowing it. The bacillus may continue to exist in an individual’s body with no noticeable impairment of the lungs or occurrence of the illness. In most cases, the germ becomes harmful only when physical resistance is lowered. All the elements in the relationship between the illness and the environment seem to be easily determined. A known and observable microorganism can be isolated from the sputum of all tubercular patients. The environmental changes that foster tuberculosis, such as a deterioration in diet and working conditions, can be interpreted in terms of calories, minerals, vitamins, and even working hours. Normally the disease can be arrested by sufficient quantities of nourishing foods, by rest, and by the administration of drugs.
In contrast with tuberculosis, however, the specific causes of many chronic and degenerative diseases are very obscure. Illness may occur under “favorable” as well as “unfavorable” environmental conditions. Heart disease, cancer, arthritis, and diabetes—the most important degenerative diseases of our time—claim their victims from the well-to-do and poor alike. The environmental conditions that encourage infectious disorders, such as poverty and arduous work, are often absent from the lives of persons afflicted with a degenerative disease. The course taken by a degenerative illness is highly complex, varying markedly from individual to individual. The relationship between environmental change and degenerative disorders lacks the simplicity and drama encountered in cases of tuberculosis. Hence, any emphasis on environmental change in the study of heart disease, cancer, and similar illnesses still meets with a certain amount of reserve and distrust....

Table of contents

  1. Title page
  2. DEDICATION
  3. INTRODUCTION
  4. FOREWORD
  5. ACKNOWLEDGMENTS
  6. NOTE
  7. CHAPTER ONE - The Problem
  8. CHAPTER TWO - Agriculture and Health
  9. CHAPTER THREE - Urban Life and Health
  10. CHAPTER FOUR - The Problem of Chemicals in Food
  11. CHAPTER FIVE - Environment and Cancer
  12. CHAPTER SIX - Radiation and Human Health
  13. CHAPTER SEVEN - Human Ecology
  14. CHAPTER EIGHT - Health and Society
  15. APPENDIX A - CHANGING CONCEPTS OF ILLNESS
  16. APPENDIX В
  17. NOTES