Biopharmaceutics
eBook - ePub

Biopharmaceutics

From Fundamentals to Industrial Practice

  1. English
  2. ePUB (mobile friendly)
  3. Available on iOS & Android
eBook - ePub

Biopharmaceutics

From Fundamentals to Industrial Practice

Book details
Book preview
Table of contents
Citations

About This Book

Explore the latest research in biopharmaceutics from leading contributors in the field

In Biopharmaceutics - From Fundamentals to Industrial Practice, distinguished Scientists from the UK's Academy of Pharmaceutical Sciences Biopharmaceutica Focus Group deliver a comprehensiveexamination of the tools used within the field of biopharmaceuticsand their applications to drug development. This edited volume is an indispensable tool foranyone seeking to better understand the field of biopharmaceutics as it rapidly developsand evolves.

Beginning with an expansive introduction to the basics of biopharmaceutics and the context that underpins the field, theincluded resources go on to discuss how biopharmaceutics are integrated into product development within the pharmaceutical industry. Explorations of howtheregulatoryaspects of biopharmaceutics function, as well as the impact of physiology and anatomy on the rate and extent of drug absorption, follow.

Readers will find insightful discussions of physiologically based modelingas a valuable asset in the biopharmaceutics toolkit and how to apply the principles of the field to special populations.The book goes on to discuss:

  • Thoroughintroductionsto biopharmaceutics, basic pharmacokinetics, and biopharmaceutics measures
  • Comprehensive explorations of solubility, permeability, and dissolution
  • Practical discussions of the use of biopharmaceutics to inform candidate drug selection and optimization, as well as biopharmaceutics tools for rational formulation design
  • In-depth examinations of biopharmaceutics classification systems and regulatory biopharmaceutics, as well as regulatory biopharmaceutics and the impact of anatomy and physiology

Perfect forprofessionals working in the pharmaceutical and biopharmaceutical industries, Biopharmaceutics - From Fundamentals to Industrial Practice is an incisive and up-to-date resource on the practical, pharmaceuticalapplicationsof the field.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Biopharmaceutics by Hannah Batchelor in PDF and/or ePUB format, as well as other popular books in Medicine & Pharmacology. We have over one million books available in our catalogue for you to explore.

Information

Publisher
Wiley
Year
2021
ISBN
9781119678373
Edition
1
Subtopic
Pharmacology

1
An Introduction to Biopharmaceutics

Hannah Batchelor
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom

1.1 Introduction

The aim of this chapter is to introduce biopharmaceutics and to define some key terms used within biopharmaceutics. It will also briefly introduce where biopharmaceutics sits in the drug development process.

1.2 History of Biopharmaceutics

The term biopharmaceutics was introduced in the 1960s by Levy [1]. The word originates from the combination of bio‐ from the Greek meaning relating to living organisms or tissue and pharmaceutics defined as the science of pharmaceutical formulations; in this case the living organism is the person (or animal being treated). In modern parlance, the term biopharmaceutics encompasses the science associated with the physical/chemical properties of the drug product (including all components therein) and the interactions of this product with parameters linked to the route of administration that affect the rate and extent of drug uptake or presence at the site for local action. It combines knowledge of materials science; physiology; anatomy and physical sciences.
In more simple terms it is everything that controls the availability of the drug: that is how the drug exits the dosage form and travels to the systemic circulation (for systemically acting drugs) or to the local site of action for locally acting agents. It provides a link between the formulation and the clinical performance of a drug; a mechanistic understanding of biopharmaceutics ensures that the formulation is optimised in terms of exposure. This is shown schematically in Figure 1.1 where biopharmaceutics is focussed on absorption.
Schematic illustration of the fate of drugs once administered orally.
Figure 1.1 Schematic of the fate of drugs once administered orally; biopharmaceutics relates to the absorption aspect of this image.
The term biopharmaceutics can cause confusion; particularly with the advent of biopharmaceutical drug products. There is evidence in confusion in terminology back in the 1970s where efforts were made to standardise the terminology used [2]; these efforts defined biopharmaceutics in several ways according to the experts at the time of publication. The most widely used definition is, ‘The study of the influence of formulation on the therapeutic activity of a drug product. Alternatively, it may be defined as a study of the relationship of the physical and chemical properties of the drug and its dosage form to the biological effects observed following the administration of the drug in its various dosage forms’ [3].
An analysis of new drug approvals in 2019 (US, EU and Japan) showed that oral products represented the majority of approvals (50%) with tablets and capsules as the dominant oral dosage forms [4]. Thus biopharmaceutics has tended to focus on oral more than alternative routes of administration.
Historically biopharmaceutics was part of clinical pharmacology and pharmaceutical chemistry, only becoming its own scientific discipline in the 1970s. In scientific terms, the MeSH definition (MeSH [Medical Subject Headings] is the United States National Library of Medicine controlled vocabulary thesaurus used for indexing articles for PubMed) of biopharmaceutics (introduced in 1970) is, ‘The study of the physical and chemical properties of a drug and its dosage form as related to the onset, duration and intensity of its action’. The MeSH term ‘biopharmaceutics’ being introduced in the 1970s provides an insight into the history of the topic; the scientific discipline existed long before but was previously listed in scientific data based under a bigger heading of pharmacology as:
Schematic illustration of frequency of biopharmaceutics as a MESH terms in publications versus time.
Figure 1.2 Frequency of biopharmaceutics as a MESH terms in publications versus time.
Source: Data from Pubmed.gov, November 2020.
  • Chemistry, Pharmaceutical (1966–1969)
  • Drug Compounding (1966–1969)
  • Drugs (1966–1969)
  • Pharmacology (1966–1969)
A search in PubMed of ‘Biopharmaceutics’ [Mesh] conducted in November 2020 resulted in 2725 retrieved documents with a peak in the early 1970s as the science of biopharmaceutics developed. There has also been a general trend of increased use of the term biopharmaceutics since the year 2000. This is shown in Figure 1.2.
There have been a number of key events in the history of biopharmaceutics and these are highlighted in Figure 1.3.

1.3 Key Concepts and Definitions Used Within Biopharmaceutics

There is a strong link between biopharmaceutics and pharmacokinetics. Pharmacokinetics measures the concentration of drug at a site in the body versus time. Understanding the biopharmaceutics will influence the pharmacokinetic profile observed. In particular, biopharmaceutics has a focus on the absorption phase of a drug as this is the phase where the dosage form design has influence over the pharmacokinetic profile. The metabolism and subsequent elimination and excretion are driven by the drug properties rather than those of the formulation used to administer the drug.
Pharmacokinetic studies provide information on drug concentrations (typically in plasma or blood) versus time; these studies can be used to demonstrate safety and efficacy of a drug as well as compare the relative performance of alternative dosage forms (for further details see Chapter 2). This performance can be by design, for example, to develop a sustained release product to alter dosing frequency. Generation of statistically similar pharmacokinetic profiles for alternative drug products provides reassurance that these medicines can be interchanged with limited effects on clinical efficacy. These statistically similar pharmacokinetic profiles show bioequivalence between drug products, this bioequivalence is discussed more in the chapter on regulatory biopharmaceutics (Chapter 10). This is of great importance for generic medicine development to ensure that medicines can be interchanged with not clinical impact to the patient.
Schematic illustration of an overview of the biopharmaceutics timeline of key events.
Figure 1.3 Overview of the biopharmaceutics timeline of key events.
Pharmacokinetic data can be analysed to demonstrate what fraction of the drug administered orally was measured within the system; this fraction is termed the bioavailable dose. It is recognised that not all drug administered will reach the site of measurement as some will be lost due to: localised degradation; failure to permeate membranes to reach the site of measurement; metabolism between site of absorption and site of measurement. Calculation of the bioavailability of a drug is important in dosage form design as it will influence the dose to be administered as well as the likelihood of reaching the target concentration at the site of measurement (and site of action). This can also be termed the bioperformance of a product.
The processes that influence the bioavailable dose are key to the science of biopharmaceutics. There is emphasis on the fraction of drug absorbed as this relates to the inherent drug properties and how they link with the dosage form as well as the site where absorption occurs. Formulation scientists can design dosage forms for a range of sites for administration and understanding how the fraction ...

Table of contents

  1. Cover
  2. Table of Contents
  3. Series Page
  4. Title Page
  5. Copyright Page
  6. List of Contributors
  7. Foreword
  8. 1 An Introduction to Biopharmaceutics
  9. 2 Basic Pharmacokinetics
  10. 3 Introduction to Biopharmaceutics Measures
  11. 4 Solubility
  12. 5 Permeability
  13. 6 Dissolution
  14. 7 Biopharmaceutics to Inform Candidate Drug Selection and Optimisation
  15. 8 Biopharmaceutics Tools for Rational Formulation Design
  16. 9 Biopharmaceutic Classification System
  17. 10 Regulatory Biopharmaceutics
  18. 11 Impact of Anatomy and Physiology
  19. 12 Integrating Biopharmaceutics to Predict Oral Absorption Using PBPK Modelling
  20. 13 Special Populations
  21. 14 Inhalation Biopharmaceutics
  22. 15 Biopharmaceutics of Injectable Formulations
  23. 16 Biopharmaceutics of Topical and Transdermal Formulations
  24. 17 Impact of the Microbiome on Oral Biopharmaceutics
  25. Index
  26. End User License Agreement