The Science of Sugar Confectionery
eBook - ePub

The Science of Sugar Confectionery

  1. 222 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

The Science of Sugar Confectionery

Book details
Book preview
Table of contents
Citations

About This Book

Since the first edition of The Science of Sugar Confectionery (2000), the confectionery industry has responded to ever-changing consumer habits. This new edition has been thoroughly revised to reflect industry's response to market driven nutrition and dietary concerns, as well as changes in legislation, labelling, and technology.

Building on the strengths of the first edition, the author's personal knowledge and experience of the sugar confectionery industry is used to provide a thorough and accessible account of the field.Written so the reader needsno more than a rudimentary level of chemistry, this book covers the basic definitions, commonly used and new ingredients in the industry. It thendiscusses the various types of sugar confectionery including"sugar glasses" (boiled sweets), "grained sugar products" (fondants), toffees and fudges, "hydrocolloids" (gums, pastilles and jellies) and concludes with a new chapter on future outlooks.

Featuring expanded coverage of special dietary needs, covering topics such as vegetarianism and veganism, religious requirements and supplemented products, this new edition reflects current and evolving needs in the sugar confectionery field.

Frequently asked questions

Simply head over to the account section in settings and click on “Cancel Subscription” - it’s as simple as that. After you cancel, your membership will stay active for the remainder of the time you’ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlego’s features. The only differences are the price and subscription period: With the annual plan you’ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, we’ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access The Science of Sugar Confectionery by William P Edwards in PDF and/or ePUB format, as well as other popular books in Technology & Engineering & Food Science. We have over one million books available in our catalogue for you to explore.

Information

Chapter 1
Introduction

1.1 Introduction to the Second Edition

In the time since the original edition appeared various changes have taken place that have rendered some parts of the original edition out of date. There is now a much greater importance being placed on nutrition, particularly obesity and related diseases. This has led to a new chapter on nutrition covering the components of food, nutrition labelling, obesity, reducing diets, and special religious and ethical diets.
In terms of ingredients the use of hydrogenated vegetable fats has ceased to be replaced by fractionated vegetable fats. Public demand for natural colours and flavours has increased markedly. Some long established products have changed from synthetic colours and flavours to natural ones. The demand for additive free food has led to the production of products that are described as ‘clean label’, i.e. they have no added colours or flavours. The performance of natural colours has improved markedly. Where it was once easy to spot products with natural colours since they only came in pastel shades, they now have the same bright intense shades produced by synthetic colours.
A new whipping agent has appeared on the market: the protein extracted from potatoes. This provides a whipping agent that should be acceptable to vegans and vegetarians while avoiding the problems of existing whipping agents. The aerated products chapter has been appropriately amended.
The range of permitted bulk and intense sweeteners has increased since the appearance of the first edition. This should allow better ranges of sugar free confectionery to be made.

1.2 Definitions and Origins of Sugar Confectionery

The confectionery industry divides confectionery into three classes: chocolate confectionery, flour confectionery and sugar confectionery. Chocolate confectionery is obviously products made out of chocolate. Flour confectionery covers items made out of flour. Traditionally, and confusingly, this covers both long life products, such as biscuits, in addition to short-life bakery products. Sugar confectionery covers the rest of confectionery. In spite of the above definition, liquorice, which does contain flour, is considered to be sugar confectionery. The confectionery industry has created many confectionery products that are a mixture of categories, e.g. a flour or sugar confectionery centre that is covered with chocolate. There is another category that is sometimes referred to as ‘sugar-free sugar confectionery’. This oxymoron refers to products that resemble sugar confectionery products but which are made without any sugars. The usual reason for making these products is to satisfy special dietary needs. A better name might be ‘sugar confectionery analogues’.
The manufacture of confectionery is not a science-based industry. Confectionery products have traditionally been created by skilled craftsman confectioners working empirically, and scientific understanding of confectionery products has been acquired retroactively. Historically, sugar confectionery does have a link with one of the science-based industries – pharmaceuticals. In the eighteenth century, sugar confectionery products were made by pharmacists as pleasant products because the active pharmaceutical products were unpleasant. The two industries continue to share some technology, such as making sugar tablets and applying panned sugar coatings. There are products that although apparently confectionery are legally medicines. This usually applies to cough sweets and similar products. In the United Kingdom these products are regulated under the Medicines Act and require a product licence. This means that all the ingredients for the product are specified and cannot easily be altered. The dividing line between confectionery and medicines is not uniform in all countries.
One reason that confectionery making is not a science-based industry is the very long product life. For example the Rowntree's fruit pastille was invented in 1879 and was first marketed in 1881. This product is still one of the leading sugar confectionery lines in the UK today (2018), and it appears that it will continue to be sold well into the 21st century. The man who invented it, Claud August Gaget, knew nothing of proteins or the peptide bond. In 1879 very little was known about proteins in scientific circles so there was no scientific basis from which to work.

1.3 Food Law

Legislation affects all parts of the food industry. In the United Kingdom, modern food law developed from the Food and Drugs Acts. Such legislation came about after an outbreak of arsenic poisoning among beer drinkers, the cause of which turned out to be the glucose that had been used in making the beer – the glucose had been prepared by hydrolysing starch with sulfuric acid. The acid had been made using the lead chamber process from iron pyrites that contained arsenic as an impurity. The approach subsequently adopted was that all foods should be ‘of the substance and quality demanded’. This was obviously intended to cover any future problems with other contamination, and not necessarily with arsenic. Other countries, particularly those whose legal systems follow Roman rather than Anglo-Saxon law, have more prescriptive laws.
The British approach is to allow any ingredient that is not poisonous unless, of course, the ingredient is banned. Additives are regulated by a positive list approach: unless the substance is on the permitted list it cannot be used. There are anomalies where a substance can be legal in foods but which is not permitted to be described in a particular way. An example of this is the substance glycherrzin, which is naturally present in liquorice and has a sweet flavour. It would be illegal to describe it as a sweetener as it is not on the permitted sweetener list. Glycherrzin is permitted as a flavouring, however, and can be added to a food, which makes the overall product taste sweeter than it would without the addition. Conversely, the protein thaumatin is permitted as an intense sweetener yet, in practice, it has been found that thaumatin has more potential as a flavouring agent. It would have been much easier and cheaper to obtain approval for thaumatin as a flavouring rather than as a sweetener.
The British system does not automatically give approval to new ingredients merely because they are natural. This is in contrast with the position in some other countries – there will always be grey areas. One example is the position of the oligo-fructose polymers that are naturally present in chicory. Chicory is undoubtedly a traditional food ingredient; however, the oligo-fructoses extracted from it cannot necessarily be described as such. If the fructose polymers are hydrolysed to fructose then that is a permitted food ingredient. However, if they are partially hydrolysed then what is the status of the resulting product? The issue of fructose polymers is further complicated because one of the properties that is interesting is that they might not be completely metabolised. If that were the case then they would be considered as additives rather than ingredients. Additives need specific approval whereas ingredients do not.
Unlike chocolate confectionery, sugar confectionery is free of legal definitions. Terms such as ‘pastille’ or ‘lozenge’, although they have an understood meaning, at least to those in the trade, are sometimes applied to products that are not strictly within that understood meaning, e.g. there are products that are sold as pastilles but which are, in fact, boiled sweets. Butterscotch must contain butter, but gums do not have to contain any gum.

1.4 The Scope of Sugar Confectionery

The confectionery industry is vast. It ranges from small shops, where the product is made on the premises, to branches of the largest companies in the food industry. Probably because sugar confectionery keeps well without refrigeration it has been a global market for many years. In spite of this there are distinct national and local tastes in sugar confectionery. A British jelly baby may resemble a German gummi bear but the taste is quite different – curiously, the British jelly baby was invented by an Austrian confectioner. Similarly, the gum and gelatine pastilles made in France and Britain are very different, yet the leading British brand was invented by a French confectioner.

1.5 Health and Safety

Sugar confectionery is not an inherently dangerous product but several points should be made. Some sugar confectionery products are made at high temperatures, e.g. 150 °C, which is hotter than most forms of cookery even if it is not a high temperature by chemical standards. Precautions must also be taken to prevent contact between people and hot equipment or products. Sugar-containing syrups not only have a high boiling point but they are by nature sticky and a splash will tend to adhere. Precautions must be taken to prevent splashes and also to deal with any that occur. In the event of a splash, either plunging the afflicted area into cold water or holding it under cold running water is the best first aid. A sensible precaution is to make sure that either running water or a suitable container of water is always available.
Most sugar confectionery ingredients are not at high risk of bacterial contamination. However, some ingredients are prone to bacterial problems; examples are egg albumen and some of the gums and gelling agents. In handling these materials, precautions need to be taken so that they do not contaminate other ingredients or any finished product. Confectionery ingredients should be food grade and any confectionery being made to be eaten should be prepared using food grade equipment and not in a chemical laboratory. It must also be ensured that dusts from handling the ingredients do not cause eye or lung irritations. Some confectionery ingredients, although perfectly edible and of good food grade, can cause irritation if inhaled.
Most of the bulk sweeteners and permitted bulking agents used in sugar free confectionery have a laxative threshold. While the effect is unpleasant it is not normally dangerous. Some individuals with a pre-existing medical condition should take special care.
Chapter 2
Basic Science
There are several aspects of science which are fundamental to sugar confectionery. They are discussed here.

2.1 Stability

Sugar confectionery products keep well compared with most other food products. Their long life ensues because spoilage organisms cannot grow, and the reason that they cannot grow is because the moisture content is too low.

2.1.1 Water Activity

The relevant parameter is not only the water content but also the water activity. Water activity is a thermodynamic concept that accounts for the fact that materials containing different water content do not behave in the same way, either chemically or biologically. It reflects the ability of the water to be used in chemical or biological reactions, and it is the concentration corrected for the differences in the ability of the water to undertake chemical reactions. If a non-volatile solute is dissolved in water then the vapour pressure decreases in a specific way for a perfect mixture. A thermodynamically ideal substance always has an activity of unity.
Originally, water activity could not be measured directly. One method was to measure the weight loss of a product held at a range of controlled relative humidities, which also had the effect of holding the product over a range of water activities. If a product is held at its own water activity it neither gains nor loses weight, and this point is described as its equilibrium water activity.

2.1.2 Equilibrium Relative Humidity (ERH)

This term is normally abbreviated to ERH. The ERH can be deduced by extrapolating the weight loss data over a range of water activities for values greater and less than those actually measured for the product. Where the two lines intersect is the water activity of the product. This extremely tedious and time-consuming method has largely been superseded by instruments that measure the water activity directly. The ERH still has practical importance since it is an indication of the conditions under which the product can be stored without deterioration.

2.1.3 Dew Point

A related property is the dew point, which is the point at which condensation occurs upon cooling. When products are being cooled the temperature must not fall to the dew point otherwise condensation will occur on the product and product spoilage is likely.

2.2 Colligative Properties

2.2.1 Boiling Points

Colligative properties are defined as those properties that depend upon the number of particles present rather than the nature of the particles. In sugar confectionery the most important of these is the elevation of boiling point. Because sugars are very soluble, very large boiling point elevations are produced, e.g. as large as 50 °C. Remembering that elevation of the boiling point is proportional to the concentration of the solute it is not surprising that the boiling point is used as a measure of the concentration and hence as a process control.
The boiling point of a liquid is the temperature at which the vapour pressure is equal to the atmospheric pressure. If the pressure is increased the boiling point will also increase whereas reducing the pressure will reduce the boiling point. Most sugar confectionery is made by boiling up a mixture of sugars in order to concentrate them. The use of vacuum here has several advantages. Energy consumption is reduced, browning is reduced and the whole process is speeded up. A common practice is to boil a mixture of sugars under atmospheric pressure to a given boiling point. A vacuum is then applied, which causes the mixture to boil under reduced pressure. This not only concentrates the mixture, but the latent heat of evaporation also cools the mixture rapidly, thus speeding up the production process since the product must ultima...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright Page
  4. Preface to the First Edition
  5. Preface to the Second Edition
  6. Contents
  7. Chapter 1 Introduction
  8. Chapter 2 Basic Science
  9. Chapter 3 Nutrition
  10. Chapter 4 Ingredients
  11. Chapter 5 Emulsifiers, Colours and Flavours
  12. Chapter 6 Confectionery Plant
  13. Chapter 7 Sugar Glasses in the Chemistry of Boiled Sweets
  14. Chapter 8 Grained Sugar Products
  15. Chapter 9 Pan Coating
  16. Chapter 10 Toffees and Caramels
  17. Chapter 11 Gums, Gelled Products and Liquorice
  18. Chapter 12 Chewing Gum
  19. Chapter 13 Aerated Products
  20. Chapter 14 Sugar-free Confectionery
  21. Chapter 15 Lozenges
  22. Chapter 16 Tabletting
  23. Chapter 17 Experiments
  24. Chapter 18 The Future
  25. Subject Index