Biodegradable Composites
eBook - ePub

Biodegradable Composites

Materials, Manufacturing and Engineering

  1. 209 pages
  2. English
  3. ePUB (mobile friendly)
  4. Available on iOS & Android
eBook - ePub

Biodegradable Composites

Materials, Manufacturing and Engineering

Book details
Book preview
Table of contents
Citations

About This Book

With conventional materials contributing greatly to environmental waste, biodegradable and natural composites have grown in interest and display low environmental impact at low cost across a wide range of applications. This book provides an overview of different biodegradable and natural composites and focuses on efforts into increasing their mechanical performance to extend their capabilities and applications.

Frequently asked questions

Simply head over to the account section in settings and click on ā€œCancel Subscriptionā€ - itā€™s as simple as that. After you cancel, your membership will stay active for the remainder of the time youā€™ve paid for. Learn more here.
At the moment all of our mobile-responsive ePub books are available to download via the app. Most of our PDFs are also available to download and we're working on making the final remaining ones downloadable now. Learn more here.
Both plans give you full access to the library and all of Perlegoā€™s features. The only differences are the price and subscription period: With the annual plan youā€™ll save around 30% compared to 12 months on the monthly plan.
We are an online textbook subscription service, where you can get access to an entire online library for less than the price of a single book per month. With over 1 million books across 1000+ topics, weā€™ve got you covered! Learn more here.
Look out for the read-aloud symbol on your next book to see if you can listen to it. The read-aloud tool reads text aloud for you, highlighting the text as it is being read. You can pause it, speed it up and slow it down. Learn more here.
Yes, you can access Biodegradable Composites by Kaushik Kumar, J. Paulo Davim in PDF and/or ePUB format, as well as other popular books in Physical Sciences & Physics. We have over one million books available in our catalogue for you to explore.

Information

Publisher
De Gruyter
Year
2019
ISBN
9783110602845
Edition
1


Part I: Introduction and Material

Divya Zindani, Kaushik Kumar, J. Paulo Davim

1 An insight into plant-based biodegradable composites

Divya Zindani, Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar, India
Kaushik Kumar, Department of Mechanical Engineering, Birla Institute of Technology Mesra, Ranchi, India
J. Paulo Davim, Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
Abstract: There has been increasing concern over the depleting petroleum resources. The added concern for environment has also motivated the research community to search for alternative material solutions to meet many of the mankind needs. Biodegradable materials are surely one of the key alternative solution and have been at the center stage of the scientific research. Biodegradable composite materials derived from plant fibers and biopolymers are the materials that have been of great interest recently in the domain of biodegradable materials as they have the potential in meeting the market needs and a key replacement to the petroleum-based products, ultimately promoting environmental sustainability. Furthermore, biodegradable composites are relatively cheap. This chapter therefore reviews the research trends, production techniques, challenges, and future prospects for the biodegradable composites derived from plant proteins and biopolymers.
Keywords: Green composites, biodegradable composites, sustainability, natural fiber/filler, green polymers

1.1 Introduction

Green composites are material classes that are renewable and biodegradable. Being renewable these composites take care of the environmental and sustainability concerns. Green composites have received special attention in the era where community is concerned mainly with climatic change and the regulations pertaining to the clean environment. Thus, their attractiveness from environmental perspective is one of the major reason behind wide acceptability in engineering domain. Polymers and other synthetic materials, which poses serious concerns such as in medical, agriculture, and so on, are being replaced with the green composite materials. Nonrenewable nature of petroleum-based products further demands for alternate materials that are biodegradable and have low toxicity. Therefore, there has been intense interest from the scientific community to explore new biodegradable materials and their applicability [1]. With the advent of green composites, opportunities have been presented to enhance the living standard of societies around the globe [2].
Green composites have aroused interest of mankind in applications where products possesses short life, disposable characteristics, and so on. Therefore, they have been used for applications such as consumer products, packaging, and so on. These materials have now become integral part of mankind evolution in era of environmental concerns.
Composites have undergone series of improvements considering the disadvantages associated with the performance of traditional materials. The series of advancements are often referred to as five generations [2]. Efforts have also been made in the development of green polymers that are environmentally favorable as well as possesses degradability characteristics. Therefore, the use of green polymers with natural plant fibers as reinforcement has led to the newer class of material known as green composite. The term biodegradability signifies a complete dissolution of the product after use into the natural environment. After degradation they may become food source for the microorganisms in the soil [3, 4, 5], resulting in effective carbon balance within the ecosystem.
Existence of natural polymers as well as the resulting biodegradable composites dates back to historical years as for instance paper, silk, and so on. Great Wall of China made from willow branches, stone, reeds, and clay and bows made from animal horns, silk, or wood are among the few existing biodegradable composite materials [2]. Since their inception, the wheels of advancements have been running intermittently.
Given the importance of green composites, this chapter reviews on the advancements and development made. Discussion is made on the fabrication techniques as well as on the related properties. Applications of green composites have been discussed toward the end of the chapter. The chapter finally ends with the concluding remarks.

1.2 Techniques for processing

Comprehending processing steps is quintessential for the fabrication of a new product that may be green composite. The development of a green composite incepts with the suitable selection of biopolymer matrix and the reinforcement. Application area dominates the selection process. Next stage is that of suitable surface treatment technique, if demanded, to be opted for the treatment of reinforcing material. Mixing of the treated or untreated reinforcing material with the selected biopolymer is the next step in the development phase. Next the fabrication process is selected that should be economical and should have high rates of production. The fabrication process to be employed depends on the properties of the constituting ingredients, that is, matrix and reinforcement. In case of nanocomposites, recent developments in fabrication involves that of nanomanufacturing. In that case of nanobiocomposite materials, various processing methods include melt intercalation, solution intercalation, solution casting, intercalative polymerization, and so on [6, 7].
Few important concerns that should considered through the processing stage includes the availability of reinforcements in the desired form (powders, fibers, and whiskers), low shrinkage of the mold, less abrasiveness, appearance, and so on. Some of the recent materials for matrix that have been investigated include L-polylactide acid, polylactic acid, poly-3 hydroxyl butyrate, polyhydroxyalkanoates, and starch, while that of reinforcements are plant based. Matrices based on plant oil, for instance, soya oil and puree of mango, have also been used in the fabrication of biocomposites on nanoscale [8, 9]. However, such matrices have poor mechanical and thermal properties [10].The shortcomings have been taken care by the addition of suitable nano- or microfillers. The addition of suitable fillers not only enhances the properties but also objectifies to reduce the total cost of final specimen [11]. Nanosized reinforcements have been able to provide better properties owing to their high specific area [12, 13]. This work reviews microcomposites and nanobiocomposites.

1.3 Properties and morphological study

Processing conditions, properties of the constituting ingredients, processing method, applied pressure, temperature, amount of reinforcements, and so on dictate the microstructure and properties of the resulting composite material. The type of plasticizers and the...

Table of contents

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface
  6. List of contributors
  7. Editorsā€™ biographies
  8. Part I: Introduction and Material
  9. Part II: Manufacturing and Properties
  10. Part III: Machining and Application
  11. Index