Computer Methods in Biomechanics and Biomedical Engineering  2
eBook - ePub

Computer Methods in Biomechanics and Biomedical Engineering 2

J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones

  1. 852 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Computer Methods in Biomechanics and Biomedical Engineering 2

J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Contains papers presented at the Third International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (1997), which provide evidence that computer-based models, and in particular numerical methods, are becoming essential tools for the solution of many problems encountered in the field of biomedical engineering. The range of subject areas presented include the modeling of hip and knee joint replacements, assessment of fatigue damage in cemented hip prostheses, nonlinear analysis of hard and soft tissue, methods for the simulation of bone adaptation, bone reconstruction using implants, and computational techniques to model human impact. Computer Methods in Biomechanics and Biomedical Engineering also details the application of numerical techniques applied to orthodontic treatment together with introducing new methods for modeling and assessing the behavior of dental implants, adhesives, and restorations. For more information, visit the "http://www.uwcm.ac.uk/biorome/international symposium on Computer Methods in Biomechanics and Biomedical Engineering/home page, or "http://www.gbhap.com/Computer_Methods_Biomechanic s_Biome dical_Engineering/" the home page for the journal.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Computer Methods in Biomechanics and Biomedical Engineering 2 als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Computer Methods in Biomechanics and Biomedical Engineering 2 von J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Éducation & Enseignement primaire. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2020
ISBN
9781000159455

1. MULTIBODY SYSTEMS AND JOINT MODELS

ANATOMICAL MODELS OF DIARTHRODIAL JOINTS: RIGID MULTIBODY SYSTEMS AND DEFORMABLE STRUCTURES

J.H. Heegaard1

1. ABSTRACT

Computer models of diarthrodial joint are commonly represented by a set of constraints limiting the possible motion between limb segments. The nature of these constraints determines the joint motion and the forces and stresses acting across the joint. This paper presents a brief review of commonly used mathematical methods to model diarthrodial joints. Merits and limitations of each method are also presented and possible trends for future research in computational joint biomechanics are briefly discussed.

2. INTRODUCTION

Diarthrodial joints provide mobility to the skeletal system. At the same time they must also provide stability to the skeletal assemblage. For example, mobility at the knee is required to ensure clearance during the swing phase of the leg, while stability at the stance leg knee ensures proper support of the body. Mobility and stability of the skeletal system are antagonistic features which are realized by subjecting diarthrodial joints to high loading. Most joints in the leg bear several times body weight during daily activities (1).
Computer models of diarthrodial joints have been recognized as effective tools to better understand the relationship existing between joint anatomy, joint kinematics and loading at the joint(2, 3). Each limb segment can be modeled as a rigid body resulting in a finite dimensional description of its kinematics. If stresses need to be evaluated, the limb segments must be modeled as deformable continua, requiring numerical methods, such as the finite element method, to discretize the segment’s kinematics into a finite dimensional space.
From a mathematical point of view, joints can be viewed as constraint equations limiting the range of motion of the connected limb segments. The most common types of joint used in computer models include hinges, linkages, and contact between anatomical articular surfaces. The objective of this paper is to briefly review these different joint models, and to discuss their capabilities and limitations.
In Section 3 we model limb segments as rigid bodies and express their dynamics using Lagrange’s equations of motion. We further derive the constraint equations used to model the most commonly used types of joints. In Section 4 we model limb segments as deformable continua and discuss the constraint equations used to represent deformable anatomical joints. The features of these joint models are illustrated with a 3D model of the knee used to calculate the motion of the patella and the stresses in the adjacent tissues during knee flexion. We conclude in Section 5 with a few remarks concerning computer models for diarthrodial joints and possible improvements to current models.
Keywords: Diarthrodial joint, Contact, Dynamics, Continuum mechanics
1 Professor, Mechanical Engineering Department, Stanford University, Stanford, CA 94305-4040

3. RIGID BODY MODELS

3.1. Equations of motion

In this Section we treat each limb segment as a rigid body. The kinematics of the system can therefore be expressed with a finite number N of generalized coordinates q1,…,qN. The Lagrangian L of the system is defined as
L=TV
(1)
where T and V represent respectively the kinetic energy and the potential energy. The N Lagrange’s equations of motion are given by
ddtLq˙rLqr=Qr
(2)
where Qr is the rth. generalized force
Qr=βFβrβqr
(3)
corresponding to those forces Fβ not already included in V.

3.2. Motion constraints

Additional constraints may limit the possible motion of each segment. For instance a joint between two segments B1 and B2 may prevent some configurations to occur.
An important motivation for using Lagrange’s equations is the possibility to eliminate constraint equations by choosing a proper set of generalized coordinates. In some circumstances however, it may be helpful not to eliminate the constraint equations. Such may be the case when handling difficult to express constraints, or when constraint forces need to be evaluated. In those cases, additional constraint equations fs(q, t) = 0; s = 1, …, C must be introduced to ensure consistency between the system configuration and the motion constraints.
The equations of motion take then the usual form
ddtLq˙rLqr+s=1Cλs fsqr=Qr
(4)
where the λs are Lagrange multiplier associated to the generalized c...

Inhaltsverzeichnis

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. Contributors
  8. 1. Multibody Systems and Joint Models
  9. 2. Hip Replacements: Prosthesis/Cement/Bone Analysis
  10. 3. Bone Adaptation, Structural Models and Architecture
  11. 4. Spine and Vertebra Mechanics
  12. 5. Reconstructive Surgery, Virtual Reality and Implant Analysis
  13. 6. Soft Tissue Structures, Contact and Biofluid Mechanics
  14. 7. Dental Materials, Behaviour and Biomechanics
  15. 8. Craniofacial Mechanics and Diagnostic Methods
Zitierstile für Computer Methods in Biomechanics and Biomedical Engineering 2

APA 6 Citation

Middleton, J., Pande, G., & Jones, M. (2020). Computer Methods in Biomechanics and Biomedical Engineering  2 (2nd ed.). CRC Press. Retrieved from https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf (Original work published 2020)

Chicago Citation

Middleton, J, Gyan Pande, and M Jones. (2020) 2020. Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd ed. CRC Press. https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf.

Harvard Citation

Middleton, J., Pande, G. and Jones, M. (2020) Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd edn. CRC Press. Available at: https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Middleton, J, Gyan Pande, and M Jones. Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd ed. CRC Press, 2020. Web. 14 Oct. 2022.