Computer Methods in Biomechanics and Biomedical Engineering  2
eBook - ePub

Computer Methods in Biomechanics and Biomedical Engineering 2

J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones

  1. 852 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Computer Methods in Biomechanics and Biomedical Engineering 2

J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Contains papers presented at the Third International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (1997), which provide evidence that computer-based models, and in particular numerical methods, are becoming essential tools for the solution of many problems encountered in the field of biomedical engineering. The range of subject areas presented include the modeling of hip and knee joint replacements, assessment of fatigue damage in cemented hip prostheses, nonlinear analysis of hard and soft tissue, methods for the simulation of bone adaptation, bone reconstruction using implants, and computational techniques to model human impact. Computer Methods in Biomechanics and Biomedical Engineering also details the application of numerical techniques applied to orthodontic treatment together with introducing new methods for modeling and assessing the behavior of dental implants, adhesives, and restorations. For more information, visit the "http://www.uwcm.ac.uk/biorome/international symposium on Computer Methods in Biomechanics and Biomedical Engineering/home page, or "http://www.gbhap.com/Computer_Methods_Biomechanic s_Biome dical_Engineering/" the home page for the journal.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Computer Methods in Biomechanics and Biomedical Engineering 2 est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Computer Methods in Biomechanics and Biomedical Engineering 2 par J. Middleton, Gyan Pande, M. L. Jones, J. Middleton, Gyan Pande, M. L. Jones en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Éducation et Enseignement primaire. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2020
ISBN
9781000159455
Édition
2

1. MULTIBODY SYSTEMS AND JOINT MODELS

ANATOMICAL MODELS OF DIARTHRODIAL JOINTS: RIGID MULTIBODY SYSTEMS AND DEFORMABLE STRUCTURES

J.H. Heegaard1

1. ABSTRACT

Computer models of diarthrodial joint are commonly represented by a set of constraints limiting the possible motion between limb segments. The nature of these constraints determines the joint motion and the forces and stresses acting across the joint. This paper presents a brief review of commonly used mathematical methods to model diarthrodial joints. Merits and limitations of each method are also presented and possible trends for future research in computational joint biomechanics are briefly discussed.

2. INTRODUCTION

Diarthrodial joints provide mobility to the skeletal system. At the same time they must also provide stability to the skeletal assemblage. For example, mobility at the knee is required to ensure clearance during the swing phase of the leg, while stability at the stance leg knee ensures proper support of the body. Mobility and stability of the skeletal system are antagonistic features which are realized by subjecting diarthrodial joints to high loading. Most joints in the leg bear several times body weight during daily activities (1).
Computer models of diarthrodial joints have been recognized as effective tools to better understand the relationship existing between joint anatomy, joint kinematics and loading at the joint(2, 3). Each limb segment can be modeled as a rigid body resulting in a finite dimensional description of its kinematics. If stresses need to be evaluated, the limb segments must be modeled as deformable continua, requiring numerical methods, such as the finite element method, to discretize the segment’s kinematics into a finite dimensional space.
From a mathematical point of view, joints can be viewed as constraint equations limiting the range of motion of the connected limb segments. The most common types of joint used in computer models include hinges, linkages, and contact between anatomical articular surfaces. The objective of this paper is to briefly review these different joint models, and to discuss their capabilities and limitations.
In Section 3 we model limb segments as rigid bodies and express their dynamics using Lagrange’s equations of motion. We further derive the constraint equations used to model the most commonly used types of joints. In Section 4 we model limb segments as deformable continua and discuss the constraint equations used to represent deformable anatomical joints. The features of these joint models are illustrated with a 3D model of the knee used to calculate the motion of the patella and the stresses in the adjacent tissues during knee flexion. We conclude in Section 5 with a few remarks concerning computer models for diarthrodial joints and possible improvements to current models.
Keywords: Diarthrodial joint, Contact, Dynamics, Continuum mechanics
1 Professor, Mechanical Engineering Department, Stanford University, Stanford, CA 94305-4040

3. RIGID BODY MODELS

3.1. Equations of motion

In this Section we treat each limb segment as a rigid body. The kinematics of the system can therefore be expressed with a finite number N of generalized coordinates q1,
,qN. The Lagrangian L of the system is defined as
L=T−V
(1)
where T and V represent respectively the kinetic energy and the potential energy. The N Lagrange’s equations of motion are given by
ddt∂L∂q˙r−∂L∂qr=Qr
(2)
where Qr is the rth. generalized force
Qr=∑ÎČFÎČ∂rÎČ∂qr
(3)
corresponding to those forces FÎČ not already included in V.

3.2. Motion constraints

Additional constraints may limit the possible motion of each segment. For instance a joint between two segments B1 and B2 may prevent some configurations to occur.
An important motivation for using Lagrange’s equations is the possibility to eliminate constraint equations by choosing a proper set of generalized coordinates. In some circumstances however, it may be helpful not to eliminate the constraint equations. Such may be the case when handling difficult to express constraints, or when constraint forces need to be evaluated. In those cases, additional constraint equations fs(q, t) = 0; s = 1, 
, C must be introduced to ensure consistency between the system configuration and the motion constraints.
The equations of motion take then the usual form
ddt∂L∂q˙r−∂L∂qr+∑s=1Cλs ∂fs∂qr=Qr
(4)
where the λs are Lagrange multiplier associated to the generalized c...

Table des matiĂšres

  1. Cover
  2. Half Title
  3. Title Page
  4. Copyright Page
  5. Table of Contents
  6. Preface
  7. Contributors
  8. 1. Multibody Systems and Joint Models
  9. 2. Hip Replacements: Prosthesis/Cement/Bone Analysis
  10. 3. Bone Adaptation, Structural Models and Architecture
  11. 4. Spine and Vertebra Mechanics
  12. 5. Reconstructive Surgery, Virtual Reality and Implant Analysis
  13. 6. Soft Tissue Structures, Contact and Biofluid Mechanics
  14. 7. Dental Materials, Behaviour and Biomechanics
  15. 8. Craniofacial Mechanics and Diagnostic Methods
Normes de citation pour Computer Methods in Biomechanics and Biomedical Engineering 2

APA 6 Citation

Middleton, J., Pande, G., & Jones, M. (2020). Computer Methods in Biomechanics and Biomedical Engineering  2 (2nd ed.). CRC Press. Retrieved from https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf (Original work published 2020)

Chicago Citation

Middleton, J, Gyan Pande, and M Jones. (2020) 2020. Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd ed. CRC Press. https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf.

Harvard Citation

Middleton, J., Pande, G. and Jones, M. (2020) Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd edn. CRC Press. Available at: https://www.perlego.com/book/1712833/computer-methods-in-biomechanics-and-biomedical-engineering-2-pdf (Accessed: 14 October 2022).

MLA 7 Citation

Middleton, J, Gyan Pande, and M Jones. Computer Methods in Biomechanics and Biomedical Engineering  2. 2nd ed. CRC Press, 2020. Web. 14 Oct. 2022.