Quantitative Functional Brain Imaging with Positron Emission Tomography
eBook - ePub

Quantitative Functional Brain Imaging with Positron Emission Tomography

Richard E. Carson,Peter Herscovitch,Margaret E. Daube-Witherspoon

  1. 503 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Quantitative Functional Brain Imaging with Positron Emission Tomography

Richard E. Carson,Peter Herscovitch,Margaret E. Daube-Witherspoon

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book presents the latest scientific developments in the field of positron emission tomography (PET) dealing with data acquisition, image processing, applications, statistical analysis, tracer development, parameter estimation, and kinetic modeling. It covers improved methodology and the application of existing techniques to new areas. The text also describes new approaches in scanner design and image processing, and the latest techniques for modeling and statistical analyses. This volume will be a useful reference for the active brain PET scientist, as well as a valuable introduction for students and researchers who wish to take advantage of the capabilities of PET to study the normal and diseased brain.

  • Authored by international authorities in PET
  • Provides the latest up-to-date techniques and applications
  • Covers all fundamental disciplines of PET in one volume
  • A comprehensive resource for students, clinicians, and new PET researchers

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Quantitative Functional Brain Imaging with Positron Emission Tomography als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Quantitative Functional Brain Imaging with Positron Emission Tomography von Richard E. Carson,Peter Herscovitch,Margaret E. Daube-Witherspoon im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Scienze biologiche & Biofisica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
1998
ISBN
9780080540115
SECTION VII
KINETIC MODELING
CHAPTER 54

Temporally Overlapping Dual-Tracer PET Studies1

R.A. KOEPPE, E.P. FICARO, D.M. RAFFEL, S. MINOSHIMA and M.R. KILBOURN, Division of Nuclear Medicine, University of Michigan Ann Arbor, Michigan 48109
There has been increased interest in studying multiple neurotransmitter–neuroreceptor systems within the same subject. Currently, examination of two distinct neuropharmacologic measures with positron emission tomography (PET) involves performing two independent scans. This chapter proposes a dual-tracer protocol with a single overlapping PET scan and analysis using a combined compartmental model. Advantages include (1) reduction in scan time by 1.5–2 hr, (2) neuropharmacology measures would be obtained over nearly the same interval, and (3) interventional protocols involving a pair of dual-tracer scans could be performed in a single session. Simulations were performed for various combinations of three tracers: [11C]flumazenil (FMZ), [11C]dihydrotetrabenazine (DTBZ), and N-[11C]methylpiperidinylpropionate (PMP). Noisy time-activity curves were generated simulating injection separations of 10–30 min. Model parameters were estimated for both tracers simultaneously using the combined model. For FMZ/DTBZ, two parallel two-compartment configurations were used, estimating K1 and distribution volume (DV) for each ligand. For tracer pairs involving PMP, a parallel two- and three-compartment combination was used, estimating K1 and DV for FMZ or DTBZ and K1 and k3 for PMP. Parameter estimation accuracy is strongly dependent on the choice of tracers, the brain region, the parameter of interest, the injection order, and, obviously, the injection spacing. Examination of the covariance among parameters is important for interpreting model performance. Making specific conclusions that can be generalized to any tracer pair is difficult; however, the use of tracers with rapid kinetics will yield greater success. The authors conclude that dual-tracer single-scan PET is feasible and can be implemented with a number of different radiotracers.

I INTRODUCTION

The authors’ goal is to develop methodology for use with positron emission tomography (PET) that will yield neuropharmacologic information related to two different biochemical systems or two different aspects of the same system of the brain at a single point in time. Currently, if one is interested in examining two distinct neuropharmacologic measures with PET, a scan session would involve injecting the first radioligand, scanning for about 1 hr, waiting for the first ligand to decay, injecting the second radioligand, and then scanning for approximately another hour. There are at least two obvious limitations of such a procedure: (1) the long study duration, making it difficult to scan certain patient groups; and (2) obtaining neuropharmacologic measures at two different points in time separated by about 2 hr when the physiologic/pharmacologic state of the subject may have changed. Furthermore, if one is interested in how two neuropharmacologic systems interact, a research study involving a pharmacologic challenge would require four PET scans, two baseline scans (one for each ligand), and two challenge scans. Such a protocol would require multiple days to perform and, in addition, the radiation dose to the subject may be excessive. A dual-tracer protocol with two radioligands injected 10–30 min apart and overlapping scanning offers a means of addressing these problems. The scan time required for a dual-tracer study would be reduced by 1.5–2 hr. The neuropharmacologic measures estimated from the two radioligands would be obtained over nearly the same time window. The lower doses afforded by three-dimensional (3D) imaging would allow interventional protocols involving a pair of dual-tracer studies (dual-baseline and dual-intervention scans) and could be performed in a single morning or afternoon scan session.
The rationale for a dual-tracer protocol stems from studies that indicate that many synaptic neurochemical indices by themselves may be insufficient to fully characterize neurologic diseases. As an example, multiple markers for striatal dopaminergic synapses are now available, including D1 (measured with [11C]SCH-23390) and D2 ([11C]raclopride; RAC) receptors, the presynaptic dopamine reuptake site ([11C]WIN35,428), the vesicular monoamine transporter ([11C]dihydrotetrabenazine; DTBZ), and DOPA decarboxylase activity ([18F]fluoroDOPA; FDOPA). In diseases involving both the number and the activity of dopaminergic nerve terminals, any or all of these markers have potential applications. Furthermore, there is mounting evidence that endogenous neurotransmitters and neuromodulators may influence in vivo measures with some of these agents. Finally, there is interest in examining the effects of pharmacologic treatments or test interventions with these markers. Experimental designs can now be envisioned in which two or more markers are studied under different conditions, permitting the testing of hypotheses regarding altered numbers and function of specific neurons.
An example of multitracer dopaminergic characterization is the investigation of altered presynaptic terminals and D2 receptors in unmedicated Parkinson’s disease (PD). It has been hypothesized that the observation of reduced DOPA decarboxylase activity in PD may be confounded by compensatory upregulation of enzymatic activity, whereas the density of synaptic vesicles as reflected by VMAT2 binding is a stable marker of presynaptic terminal integrity. This could be directly investigated by performing FDOPA, DTBZ, and RAC studies in unmedicated patients at baseline, followed by repeat characterizations after administering a pharmacologic dose of a D2 agonist drug. If the hypothesis were correct, FDOPA accumulation would be reduced in proportion to reduced RAC binding in the second scans due to D2 receptor-mediated downregulation of DOPA decarboxylase activity. DTBZ binding ...

Inhaltsverzeichnis

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Inside Front Cover
  5. Copyright
  6. Contributors
  7. Preface
  8. Acknowledgments
  9. SECTION I: DATA ACQUISITION AND QUANTIFICATION
  10. SECTION II: IMAGE PROCESSING
  11. SECTION III: APPLICATIONS
  12. SECTION IV: STATISTICAL ANALYSIS
  13. SECTION V: TRACER DEVELOPMENT
  14. SECTION VI: PARAMETER ESTIMATION
  15. SECTION VII: KINETIC MODELING
  16. SECTION VIII: BRAINPET97 DISCUSSION
  17. Index
  18. Color Plates
Zitierstile für Quantitative Functional Brain Imaging with Positron Emission Tomography

APA 6 Citation

[author missing]. (1998). Quantitative Functional Brain Imaging with Positron Emission Tomography ([edition unavailable]). Elsevier Science. Retrieved from https://www.perlego.com/book/1810423/quantitative-functional-brain-imaging-with-positron-emission-tomography-pdf (Original work published 1998)

Chicago Citation

[author missing]. (1998) 1998. Quantitative Functional Brain Imaging with Positron Emission Tomography. [Edition unavailable]. Elsevier Science. https://www.perlego.com/book/1810423/quantitative-functional-brain-imaging-with-positron-emission-tomography-pdf.

Harvard Citation

[author missing] (1998) Quantitative Functional Brain Imaging with Positron Emission Tomography. [edition unavailable]. Elsevier Science. Available at: https://www.perlego.com/book/1810423/quantitative-functional-brain-imaging-with-positron-emission-tomography-pdf (Accessed: 15 October 2022).

MLA 7 Citation

[author missing]. Quantitative Functional Brain Imaging with Positron Emission Tomography. [edition unavailable]. Elsevier Science, 1998. Web. 15 Oct. 2022.