Polymeric Nanomaterials in Nanotherapeutics
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

  1. 558 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Polymeric Nanomaterials in Nanotherapeutics

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting.

Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields.

  • Shows how the properties of polymeric nanomaterials can be used to create more efficient medical treatments/therapies
  • Demonstrates the potential and range of applications of polymeric nanomaterials in disease prevention, diagnosis, drug development, and for improving treatment outcomes
  • Accurately explains how nanotherapeutics can help in solving problems in the field through the latest technologies and formulations

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Polymeric Nanomaterials in Nanotherapeutics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Polymeric Nanomaterials in Nanotherapeutics von im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Nanoscience. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Elsevier
Jahr
2018
ISBN
9780128139332
Chapter 1

Polymeric Nanomaterials

Recent Developments, Properties and Medical Applications

Cornelia Vasile, Physical Chemistry of Polymers Department, Romanian Academy, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania

Abstract

The unique physicochemical properties of polymeric nanomaterials (nanoscale size, large surface area to mass ratio, and high reactivity) individualize them in many application fields due to the specific features they offered to systems. Their use in nanomedicine has greatly changed the therapeutic and diagnostic modalities because they are precisely engineered materials at a molecular level. This chapter offers a general view on polymeric nanomaterials, including classification, properties, and a short methodology of characterization, applications, and the state of various nanotherapeutics. Selected types used in the medical field are described in subsequent chapters.

Keywords

Nanotherapeutics; nanomedicine; polymer; polymeric nanomaterials; diagnostic; properties; sheathed technologies

1.1 Introduction

Nanomaterials: in October 2011, the European Commission (EC) recommended to define nanomaterials as “natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate/agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range of 1–100 nm” and the specific surface area/volume of the material is greater than 60 m2/cm3 (EC, 2011; Kreyling et al., 2010). The Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) proposed a limit of 0.15% of nanoparticles below 100 nm for the definition of nanomaterials (SCENIHR, 2010). Nanomaterials can be classified as zero-dimensional, one-dimensional, two-dimensional, or three-dimensional. Nanomaterials possess unique physical (ultrasmall size, large surface area to mass ratio, high surface energy, optical, electrical, magnetic, etc.), chemical (high reactivity), and biological properties, which are different from bulk materials of the same composition. By their characteristics nanomaterials are able to modify the fundamental properties of therapeutic and diagnostic agents and other materials.
Nanotechnology is defined as the science and engineering involved in the design, synthesis, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale (10−9 m). That means it controls, programs, and manipulates matter on the nanometer length scale, that is, at the level of atoms, molecules, and supramolecular structures (i.e., molecular precision).
Nanotechnology applied in biotechnology is called nanobiotechnology (Torchilin, 2014).
Nanomedicine is considered as a subdiscipline within nanotechnology or nanosciences applied in medical sciences and helps in the prevention and treatment of various diseases. Diagnostic uses include for monitoring, repair, construction, and control of human biological systems at the molecular level, using engineered nanodevices and nanostructures (Sahoo et al., 2007). It combines nanotechnology with pharmaceutical and biomedical sciences. Nanomedicine goals are of developing novel therapeutic and diagnostic modalities and imaging agents with higher efficacy and improved safety and toxicological profiles. As a refinement of molecular medicine, nanomedicine integrates advances in genomics and proteomics, facilitating the development of personalized medicine (Jain, 2008; Zhang et al., 2007a).
The benefits of nanomedicine include: effective and less toxic therapeutic interventions, simplified therapeutic procedures, targeted drug delivery, accelerating the healing process, improved patient compliance and quality of patient’s life, reducing the frequency of dosage, minimally invasive method of administration, improved therapeutic outcomes, reducing adverse drug effects, personalized therapy, etc. From an economic point of view the benefits consist of an overall reduction in healthcare costs (e.g., by increasing the drug efficacy, reducing the duration of in-patient care stay, reducing personal healthcare costs, and the effective treatment of expensive major diseases), improving the quality of healthcare services, improved use of costly (bio)pharmaceuticals (e.g., low-dose formulation, improved drug solubility/stability, controlled drug release, improved pharmacokinetic profile, targeted drug delivery).
The integration of diagnostics with therapeutics facilitates the development of personalized medicine, that is, prescription of specific therapeutics best suited for an individual. Nanomedicine uses biomaterials, such as hard tissue implants, bone substitute materials, dental restoratives, soft tissue implants, and antimicrobial materials, drug carriers, etc. (Huber et al., 2009; Wagner et al., 2006c).
The number of academic papers using the term “nanomedicine” has increased exponentially since 2000 (Web of Science) from only a few to over a thousand. The use of nanoparticles (NPs) addresses two of the most important health challenges facing society: cancer treatment and the need for new antimicrobials.
Nanomedicines are defined as nanomaterials for specific diagnostic or therapeutic purposes (Kostarelos, 2006), as therapeutic or imaging agents. Nanomedicines control the in vivo biodistribution, improve targeting, enhance the efficacy, and reduce toxicity of a drug or biologic. It is known that the physiological and pathological processes at the cell level occur on a nanoscale. Nanoscale devices can readily interact with biomolecules (such as enzymes and receptors) on both the surface of the cell and inside the cell. Nanoscale devices are 100–10,000 times smaller than human cells. Therefore, nanoparticles can detect disease at the microlevel, provide detailed information on the progression of disease, and deliver treatment.
The terms nanopharmaceuticals and nanotherapeutics have been introduced, while colloidal systems are redefined as nanosystems, and colloidal drug-delivery systems are called nanodrug-delivery systems.
Nanotherapeutics, including polymeric ones, refers to the use of nanomedicines in areas of drug delivery and therapy conferring additional and unique properties to the drug (Hafner et al., 2014) with regard to bioavailability enhancement (Fakes et al., 2009; Lammers et al., 2012), reduced acute/systemic toxicity (Ando et al., 2011; Rom et al., 2013), or improved therapeutic efficiency by targeting compounds to a specific site of action (Low et al., 2011; Martinez et al., 2014). NPs have improved the bioavailability of drugs compared to their free form, such as cyclosporine (119% of free form) (Italia et al., 2007), estradiol (1014%) (Mittal et al., 2007), doxorubicin (DOX) (363%) (Grama et al., 2011), amphotericin B (793%) (Grama et al., 2011), curcumin (2583%) (Grama et al., 2011), (2200%) (Tsai et al., 2011), (1560%) (Khalil et al., 2013), and lutein (Chen et al., 2016). Nanotherapeutics tools are used to improve drug solubility/diffusivity of poorly water-soluble drugs (including micelles (Pepic et al., 2010) and nanocrystals (Junghanns and Müller, 2008)) to guide drugs to the desired location of action with increased precision (drug targeting (Crielaard et al., 2012;Zhang et al., 2012a)), to control drug release (nanoparticles (Hafner et al., 2009, 2011; Vasile et al., 2015a,b) and liposomes (Pavelic et al., 2005), and/or to enhance transport acro...

Inhaltsverzeichnis

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. List of Contributors
  6. Chapter 1. Polymeric Nanomaterials: Recent Developments, Properties and Medical Applications
  7. Chapter 2. Responsive Polymeric Nanotherapeutics
  8. Chapter 3. Nanorobots With Applications in Medicine
  9. Chapter 4. Polymeric Nanobiosensors
  10. Chapter 5. Nanomaterials Derived From Phosphorus-Containing Polymers: Diversity of Structures and Applications
  11. Chapter 6. Nucleic Acids–based Bionanomaterials for Drug and Gene Therapy
  12. Chapter 7. Electrospun Polymeric Nanostructures With Applications in Nanomedicine
  13. Chapter 8. Nanocoatings: Preparation, Properties, and Biomedical Applications
  14. Chapter 9. Functionalization of Polymer Materials for Medical Applications Using Chitosan Nanolayers
  15. Chapter 10. Magnetic Polymeric Nanocomposites
  16. Chapter 11. Nanogels Containing Polysaccharides for Bioapplications
  17. Chapter 12. Nanomaterials in Tissue Engineering
  18. Chapter 13. Nanoscaled Dispersed Systems Used in Drug-Delivery Applications
  19. Chapter 14. Biological Applications of Nanoparticles in Optical Microscopy
  20. Chapter 15. Regulatory Status of Therapeutic Polymeric Nanomaterials
  21. Abbreviations
  22. Index
Zitierstile für Polymeric Nanomaterials in Nanotherapeutics

APA 6 Citation

[author missing]. (2018). Polymeric Nanomaterials in Nanotherapeutics ([edition unavailable]). Elsevier Science. Retrieved from https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf (Original work published 2018)

Chicago Citation

[author missing]. (2018) 2018. Polymeric Nanomaterials in Nanotherapeutics. [Edition unavailable]. Elsevier Science. https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf.

Harvard Citation

[author missing] (2018) Polymeric Nanomaterials in Nanotherapeutics. [edition unavailable]. Elsevier Science. Available at: https://www.perlego.com/book/1831532/polymeric-nanomaterials-in-nanotherapeutics-pdf (Accessed: 15 October 2022).

MLA 7 Citation

[author missing]. Polymeric Nanomaterials in Nanotherapeutics. [edition unavailable]. Elsevier Science, 2018. Web. 15 Oct. 2022.